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Preface to the Second Edition

The first edition of this book appeared at the end of the last century and,
since then, it has been used as a textbook in several graduate courses, sum-
mer schools, and a preconference tutorial workshop on Nonlinear Systems.
Thanks to the experience gained in these activities, several modifications ap-
peared to be appropriate. The chapter on modeling was enlarged and it now
includes results on standard realization of nonlinear systems. This is moti-
vated by the importance of state-space representations in the analysis and
synthesis of nonlinear control systems in the current literature. The focus of
the book remained about structural properties that do not involve stability
issues and, for this reason, those issues are only marginally considered. The
chapter on systems structure has been enlarged by adding more material on
system inversion and by adding motivational examples. A new chapter on out-
put feedback has been included at the end of the book, in view of the major
importance it has in practical applications. Various supporting practical ex-
amples borrowed from robotics, mechanics, and other application areas have
been added throughout the book. A few exercises complete the chapters.

The introduction to the differential algebraic approach has been deleted
because new monographs on this topic are available.

Finally, solutions to the problems can be found on the following website:
http://www.springer.com/1-84628-594-1

Ancona, May 2006, Giuseppe Conte and Annamaria Perdon
Nantes, May 2006, Claude H. Moog



Preface to the First Edition

The theory of nonlinear control systems owes a large part of its modern de-
velopment and success to the systematic use of differential geometric meth-
ods and tools. One of the first problems to be considered from the point of
view of differential geometry was, at the beginning of the 1970s, that of an-
alyzing the controllability of a nonlinear system. Early works on that topic
([111, 154, 155, 9]) highlighted the power and the potentiality of the differen-
tial geometric approach and motivated the interest of many researchers.

During the 1980s, the possibilities offered by the use of differential geomet-
ric techniques in the study of nonlinear control systems were largely exploited.
One of the underlying leading ideas (see [75, 87]) was that of generalizing, to
the greatest possible extent, the so-called geometric approach which had been
first developed in the linear case (see [6, 160]). The research effort produced,
in that period, many important results and it provided effective solutions
to several control problems, such as disturbance decoupling problems, non-
interacting control problems, and model matching problems. Excellent and
comprehensive descriptions of the methodology and of the results achieved,
together with meaningful examples of applications, can be found in [86] and
in [126].

In the second half of the 1980s the limits of the differential geometric
approach started to be explored and to become known. In particular, it became
clear that problems such as system inversion or the synthesis of dynamic
feedbacks could hardly be tackled with the already well-established differential
geometric methods.

In the same period, the introduction of differential algebraic methods in
the study of nonlinear control systems ([49]) offered a way to circumvent a
number of difficulties encountered up to that time. The use of differential
algebraic concepts characterized, through the work of several authors, a novel
approach, which has essentially an algebraic nature, and, at the same time,
it provided additional tools for investigating old and new problems. Further
results on problems pertaining to inversion, noninteracting control, realization
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and reduction to canonical forms were obtained in the following years, and
others were made achievable.

Today, the use of an algebraic point of view in nonlinear control problems
has gained popularity and diffusion. This motivates the present book, whose
aim is to give an account of the algebraic approach to nonlinear system the-
ory and of its development in recent years. Together with a number of results
which are scattered in the literature, the reader will find in it a self contained,
comprehensive description of techniques and tools that can enrich his equip-
ment as a control theorist and can provide a solution to otherwise not easily
tractable control problems.

One of the distinctive characteristics that makes the algebraic approach
interesting and useful is its inherent simplicity. In comparison with the math-
ematical background needed for profitably employing differential geometric
methods, the knowledge required for using the tools described in this book is
very limited. A significant example of this is offered by the way in which the
notion of accessibility and the problem of linearization are dealt with. In both
cases, a single tool, based on elementary differentiation of a function, namely,
the notion of relative degree, gives the key for carrying on a deep analysis and
for characterizing relevant dynamic properties. From a didactic point of view,
simplicity renders the algebraic approach a practicable and valid choice in
teaching engineering courses on nonlinear control. The book emphasizes this
aspect and is usable as a teaching aid. In addition, simplicity facilitates the
development of efficient algorithmic procedures that are relevant in solving
concrete analysis and synthesis problems.

Another positive quality of the algebraic approach is its wide applicability
in the field of dynamic systems and control. Although only continuous-time
systems are considered in the book, the tools and methods described apply
successfully to a number of control problems concerning discrete-time non-
linear systems, as shown in [4, 68]. Applications to time-varying systems are
also possible, and recent results have been obtained in dealing with time-delay
systems (see [13, 120]). With respect to other general methodologies, then, the
algebraic approach appears to be more versatile and capable of going to the
heart of the problem.

Only a basic knowledge of systems and control theory is required for read-
ing the book, whose material is arranged in a self-explicatory way. The general
setting and the fundamental notions are described and illustrated in the first
part, entitled Methodology. Mathematical preliminaries are presented includ-
ing notations from exterior differentiation. The system analysis completes this
part and deals with fundamental properties as accessibility and observability.
The structure algorithm and a canonical decomposition of the system are
given as well.

In the second part, entitled Applications to Control Problems, the tools
and techniques of the algebraic approach are employed for solving a number of
basic control problems that are of practical interest in fields such as robotics
and control of general mechanical systems, as well as in process control. The



Preface to the First Edition xi

solution of the feedback linearization problem is given in terms of the acces-
sibility filtration {Hk} introduced in Chapter 3. The disturbance decoupling
problem is solved using the subspace X ∩ Y, namely, the subspace that is
observable independently from the input (Chapter 4). In the noninteracting
control problem and in the model matching problem, we use the output fil-
tration {Ek} and the structure algorithm (Chapter 5).

Finally, in the third part, entitled Differential Algebra, differentially alge-
braic tools and concepts are introduced in an elementary, but comprehensive,
way, and the results of the first parts are revisited and analyzed from a dif-
ferentially algebraic point of view. The notions described in the third part
may contribute to expand not only the technical knowledge of the reader,
but also his comprehension of the key ideas of the algebraic approach. A con-
ceptually powerful way of approaching the theory of nonlinear systems has
been proposed at the end of the 1980s in [49, 52, 54], introducing the use
of differential algebra and differential-algebraic methods. In comparison with
other approaches which employ differential geometric methods (see [86, 126]
for a comprehensive description) or Volterra or generating series (see [48]),
this one appears in particular capable of removing some drawbacks present in
the notions of rank and it allows us to characterize general invertible compen-
sators. In addition, it provides useful insight and results in connection with
various analysis and synthesis problems (see [44, 52, 54, 64, 136]). Although
differential algebraic methods are better suited for dealing with systems de-
scribed by polynomials or rational functions, extensions to more general cases
(as suggested, for instance, in [50, 141]) are possible. Here, we give a brief
introduction to the principal notions of differential algebra and we introduce
a general notion of dynamic systems in differential algebraic terms. Related
system theoretical properties are described and the principal results obtained
by the differential algebraic approach are mentioned without entering into the
detailsto help the reader in establishing a connection with the notions studied
in the previous parts of this book.

The authors acknowledge the NATO for its financial support of a joint
research project under grant CRG 890101. Several results of this project are
reported in this book.

Finally, the authors would like to thank J.W. Grizzle, and M.D. di
Benedetto for some joint research work which inspired this book. Valuable
discussions with M. Fliess, A. Isidori, A. Glumineau, E. Aranda, J.B. Pomet,
R. Andiarti, Ü. Kotta, and Y.F. Zheng are acknowledged as well as the care-
ful reading by L.A. Márquez Mart́ınez and R. Pothin, and the help of E. Le
Carpentier.

Ancona, December 1998, Giuseppe Conte and Annamaria Perdon
Nantes, December 1998, Claude H. Moog
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Methodology



1

Preliminaries

In very general terms, a dynamic system is a mathematical object that models,
in some way, the evolution over time of a given physical phenomenon. Many
authors, in the recent history of system and control theory, have provided con-
crete refinements and specializations of the above informal definition, from the
axiomatic characterization given in [99], to the development of the so-called
behavioral point of view [133, 159], or to the module theoretical characteriza-
tion proposed in [54].
Here, we do not enter into this debate, but, assuming the classical control
theoretical point of view, we view dynamic systems as objects described by a
system of first-order differential equations of the form

Σ =
{

ẋ = f(x) + g(x)u
y = h(x) (1.1)

where the independent variable t ∈ IR denotes time; the state x(·) belongs
to IRn; the input u(·) belongs to IRm; the input y(·) belongs to IRp; and the
entries of f , g, h are functions in a sufficiently general class.
Dynamic systems of the above kind arise naturally in modeling, at least locally,
many physical phenomena by first principles. Moreover, techniques based on
these models have proved quite effective in analyzing and controlling objects
such as machines, robots, vehicles as well as industrial, economic, and biologi-
cal processes [101, 147]. These considerations respond to two primary concerns
about the choice of our models, namely, generality and usefulness. However,
to make the picture more precise, it remains to specify in which class of func-
tions f , g, and h are taken. The following discussion will help us to make a
motivated choice.
Modeling involves approximation and some degree of uncertainty in dealing
with dynamic systems, we are naturally interested in properties whose validity
in nominal situations may imply validity in almost all situations, that is, in
almost all situations except, so to say, in pathological ones. A way to capture
this feature in mathematical terms is that of considering generic properties,
that is, properties that hold on open and dense subsets of suitable domains of
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definition, provided they hold at some point of such domains. This, however,
imposes some restriction on the class of mathematical objects we want to deal
with because the concept of generic properties must make sense for them.
To understand this fact and its consequences better, let us consider, for in-
stance, the role of the vector field g(x) in (1.1). Using a model of the form
(1.1), we may clearly ask that independent inputs have, in general, indepen-
dent effects on the system. Otherwise, simpler models, in which the dimension
of the input vector u is reduced, could be used, at least locally. Since this fact
depends on the rank of the vector field g(x) at different points x of the space
of states, it is useful to require that the property of having maximal rank
is generic for g(x). In particular, this implies that vector fields g(x) whose
components are C∞ functions are not admissible in (1.1), since there are C∞

functions, e.g., f(x) =
{

e−1/x2
, ifx < 0

0, ifx ≥ 0
, that, being neither generically zero

nor generically different from zero, could give rise to vector fields whose rank
is neither generically maximal nor generically lower than the maximum. In
other terms, the notion of generic property does not make sense, in general,
for systems defined by C∞ functions. The situation is different if we restrict
our attention to systems defined by analytic functions, and also meromorphic
ones, and this, as stated in Section 1.2, motivates our choice throughout the
book.

1.1 Analytic and Meromorphic Functions

To specify the class of functions we will deal with in our models, let us intro-
duce the following definition.
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Fig. 1.1. Graph of exp(−1/10x2)

Definition 1.1. Let I ⊆ IR be an open interval. A function f : I → IR
is analytic at a point x0 ∈ I if it admits a Taylor series expansion in a
neighborhood of x0. If f is analytic at every point of I ⊆ IR, we say that f is
analytic in I.
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Examples of analytic functions are given by polynomial functions, as well
as by the trigonometric functions sinx and cosx. Rational functions are ana-
lytic at any point in their domain of definition.

The function f(x) =
{

e−1/x2
, ifx �= 0

0, ifx = 0
is C∞, but it is not analytic at x = 0

(see Figure 1.1).
The basic property of analytic functions we are interested in is stated in

the following proposition.

Proposition 1.2. Let I ⊆ IR be an open interval, and let f : I → IR be an
analytic function on I; then either

(i) f ≡ 0 in I, or
(ii)the zeros of f in I are isolated.

Proof. Let Z(f) denote the set of zeros of f in I. Since f is analytic in
I, for every point x̄ ∈ Z(f), there exists a neighborhood D(x̄, r) = {x ∈
IR such that | x − x̄ |< r} ⊆ I such that

f(x) =
∞∑

n=0

cn(x − x̄)n

for x ∈ D(x̄, r). Now, two cases are possible: either cn = 0 for n = 0, 1, 2, . . .,
or there exists a minimal positive integer m such that cm �= 0 and cn = 0 for
n < m. In the latter case, we can write

f(x) = (x − x̄)mf1(x) (1.2)

where

f1(x) =
∞∑

n=0

cn+m(x − x̄)n andf1(x̄) �= 0 (1.3)

By continuity, f1(x) �= 0 in a neighborhood D(x̄, r1) and also f(x) �= 0 for
x �= x̄ in D(x̄, r1), then x̄ is an isolated zero. Alternatively, in the first case,
f ≡ 0 in D(x̄, r) and, hence, x̄ is an interior point of Z(f). Then, Z(f)
consists of points that are either isolated or interior. In particular, assume
that there exists at least one point x̄ in Z(f) which is interior and let A be
the connected component of Z(f) that contains x̄. If the point sup{A} belongs
to I, by continuity of f , it belongs to Z(f) and hence, since it is not isolated
but, necessarily, interior, it must coincide with sup{I}. Coincidence obviously
holds also if sup{A} does not belong to I. Then, we get sup{A} = sup{I}
and, in the same way, inf{A} = inf{I}. Therefore, Z(f) = I and f ≡ 0 in
I.

A polynomial function has a finite number of zeros which are isolated.
The function f(x) = sinx has an infinite number of isolated zeros located
at x = kπ for any positive or negative integer k. A typical example of a
nonanalytic continuous function whose zeros are not isolated is the following.
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Example 1.3. The function f(x), defined by

f(x) =
{

sin(1/x), ifx �= 0
0, ifx = 0

is not analytic since x = 0 is a point of accumulation for the zeros of f (see
Figure 1.3).
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Fig. 1.2. Graph of sin(1/x)

Example 1.4. The function f(x), defined by

f(x) =
{

e−1/x2
sin(1/x), ifx �= 0

0, ifx = 0

is not analytic since x = 0 is a point of accumulation for the zeros of f .
However, it is a C∞ function.

In the multivariable case, one can analogously consider an open domain D ⊂
IRn, n ∈ IN and the following Definition.

Definition 1.5. A function f : D → IR is said analytic in D if it coincides
with its Taylor expansion in the neighborhood of every point x0 ∈ D.

The generalization of Proposition 1.2 becomes

Proposition 1.6. Let D ⊆ IR be a convex, open domain and let f : D → IR
be an analytic function on D, then either

(i) f ≡ 0 on D, or
(ii)the set of zeros of f in D has an empty interior.

Proof. Given any point x1 ∈ D, take a point x0, if any exists, in the interior
of the set of zeros of f in D. The straight line L that passes through x1 and
x0 contains an interval whose points are zeros of f and, henceforth, of the
restriction of f to L. Since the restriction of f to L is analytic, it is zero by
Proposition 1.2, and hence f(x1) = 0.
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Example 1.7. Let f : IR2 → IR, be defined by f(x1, x2) = x1 − 1. It is easily
seen that f is analytic. For any point P ∈ IR2 which belongs to the set Z
of zeros of f , there does not exist any IR2-neighborhood included in Z (see
Figure 1.7).

�

�

set Z of zeros of f

�P

x2

x10 1

Fig. 1.3. Zeros of f(x1, x2) = x1 − 1

By Proposition 1.6, nonzero analytic functions defined on IRn are different
from 0 at the points of an open (since the set of zeros is obviously closed) and
dense subset of IRn, or, in other terms, they are generically different from 0.
Then, it makes sense to define the generic rank of a matrix whose entries are
analytic functions as the dimension of the maximum square submatrix hav-
ing a nonzero determinant. As the determinant is an analytic function, the
generic rank coincides with the rank of the matrix at the points of an open,
dense subset of IRn. Moreover, the generic rank is greater than or equal to the
rank at any point of IRn. Recalling what we said about the rank of the vector
field g(x) appearing in (1.1) and our interest in it being generically maximal,
it should be clear, now, that we are motivated to assume that the functions
f , g, and h in (1.1) are analytic.
If a function f(x) is analytic, in general, the same is not true for its multi-
plicative inverse 1/f(x). However, in a suitable algebraic framework, we can
give a notion of the multiplicative inverse of a nonzero analytic function. To
explain this, let us first note that, with the usual notions of sum, denoted by
+, and of product, denoted by ·, the set of analytic functions from IRr to IR
forms a ring, denoted by Ar. An important ring theoretical property of Ar is
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that it does not contain zero divisors.1

Note that C∞ functions too form a ring, but in that ring there are zero divi-
sors, for instance, the nonzero elements

f1(x) =
{

e−1/x2
, ifx < 0

0, ifx ≥ 0

and

f2(x) =
{

0, ifx ≤ 0
e−1/x2

, ifx > 0
whose product is identically zero. Rings that do not have zero divisors are
called integral domains and possess several nice properties (see, e.g., [5] for
classification of rings and for generalities about the following construction).
Here, we are interested in the fact that an integral domain can be naturally
embedded in a larger algebraic object, called its quotient field, to provide a
notion of multiplicative inverse to every nonzero element. The construction
of the quotient field of Ar, called Kr, is quite general. The elements of Kr

are pairs (f, g) of elements of Ar such that g �= 0, modulo the equivalence
relation ≈R defined by (f, g) ≈R (f ′, g′) if and only if fg′ = gf ′. Choosing
a representative in the equivalence class, an element of Kr will be written as
f/g. Using representatives, the sum and product, still denoted by + and ·, of
two elements f1/f2 and g1/g2 of Kr can be defined as follows:

(f1, g1) + (f2, g2) := (f1 · g2 + f2 · g1, g1 · g2)

(f1, g1) · (f2, g2) := (f1 · f2, g1 · g2)

Note that the above definitions are well posed in Kr, since g1 · g2 �= 0 and the
result of the sum and product does not depend on the chosen representatives.
With the above operation, Kr is a field. The ring Ar can be identified with
a subring of Kr mapping any element f ∈ Ar to f/1 ∈ Kr. Given f ∈ Ar ,
f �= 0, its inverse in f ∈ Kr is 1/f . In the following, we will write f for the
element f/1 and fg for the product f · g in Kr.
The elements of the quotient field Kr of the ring of analytic functions are
called meromorphic functions .
Any rational function is a meromorphic function; another typical example is
tan x = sin x/ cosx. If we look to meromorphic functions as functions of a
real n-dimensional variable, we see that their domains of definition are open
and dense subsets of IRn. At the same time, their sets of zeros have empty
interiors.

1.2 Control Systems

As mentioned in Section 1, we can now state precisely that the class of dynamic
systems we are going to deal with basically consists of objects defined by a
1 In a ring A, a nonzero element x is a zero divisor if there exists some other nonzero

element y such that x · y = 0.
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set of first-order differential equations of the form

Σ =
{

ẋ(t) = f(x(t)) + g(x(t))u(t)
y(t) = h(x(t)) (1.4)

where the independent variable t ∈ IR denotes time; the state x(·) ∈ IRn;
the input u(·) ∈ IRm; the output y(·) ∈ IRp; and the entries of f , g, h are
meromorphic functions.

In addition, we ask that the following assumption is satisfied.

Assumption 1.8 Given a system Σ of the form (1.4), the matrix g(x) is
such that rank g = m.

Dynamic systems of the above kind are usually called control systems or
nonlinear control systems if one wants to stress the fact that f and h are
generally nonlinear and g is not constant. As no confusion is possible, we will
usually drop the variable t from equations (1.4) and others of the same kind.
We will refer to the representation (1.4) as the state-space representation or
internal representation of a control system. External representations, on which
the state variable does not appear, will be discussed in Chapter 2, together
with their relation to internal representations.
A remarkable property of the system of differential equations (1.4) is that it
is affine in the input variable u. In principle, this is a nontrivial restriction of
the class of dynamic systems we want to consider, since more general models
could be obtained by substituting (1.4) with

Σ =
{

ẋ = f(x, u)
y = h(x) (1.5)

where the variables x ∈ IRn, u ∈ IRm, and y ∈ IRp have the usual meaning and
the entries of f, g, and h are meromorphic functions. However, affine control
systems, that is dynamic systems defined by (1.4), are sufficiently general for
modelling purposes.
In addition, the class of nonlinear systems affine in the control is closed
with respect to basic system theoretical operations, such as series and par-
allel composition, and, what is crucial, state feedback of the form u(t) =
α(x(t)) + β(x(t))v(t) where the entries of α(x) and β(x) are meromorphic
functions. This is not true for systems defined by equations of the form (1.5)
because, for instance, for f(x, u) = sin u, the choice of a feedback u = 1/x
would give rise to a representation whose elements are not meromorphic func-
tions.
Although in some situations we will need to consider dynamic systems of a
more general kind and more exotic feedbacks than those described above, we
will in general deal with objects that have an affine representation in u.
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1.3 Linear Algebraic Setting

Assuming that a nonlinear control system Σ of the form (1.1) is given, the
objective of this section is to construct an algebraic setting for defining and
studying the system theoretical properties of Σ. Our approach is built up
by introducing the notion of differential form in an abstract and formal way.
This choice is motivated by simplicity and by the fact that in the rest of the
book we will be interested only in the abstract algebraic and formal properties
of differential forms. Other less abstract treatments of the same topics, like
those developed in [83, 101, 126, 157] agree at a formal level with the one
described here. Our approach has contact points with that of [19] and, to
avoid technicalities, the reader is referred to [19] for proofs and technical
constructions not found here.

To begin with, denoting by n and m, respectively, the dimensions of the
state space and of the input space of the system Σ, let us consider the infinite
set of real indeterminates

C = {xi, i = 1, . . . , n; u(k)
j , j = 1, . . . , m, k ≥ 0}

For any positive integer r, we use the first r elements of C to denote the
coordinates of a point in IRr. Hence, a function from IRr to IR, in particular
an element of Kr, will be written as a function in the first r indeterminates
of C.

The usual partial derivative operators ∂/∂xi and ∂/∂u
(k)
j act naturally

on the field Kr of all meromorphic functions from IRr to IR, which, for that
reason, is said to be endowed with a differential field structure. Differential
fields and their properties will not be explicitly employed as tools in this
book. However, the reader can find a brief introduction to them, together
with an essential description of the point of view one can develop on control
theory starting from differential algebra, in [26], as well as in the third part
of [23]. More information can be found in [98, 102, 140]. Here, it is sufficient
for our aims to remark that, letting K denote the set theoretical union

⋃
r Kr ,

K has an obvious field structure, and, moreover, it can be endowed with a
differential structure determined by the system Σ. Because any element of K
is a meromorphic function depending on a finite subset of indeterminates of C
and, consequently, can be in general denoted by F ({xi, u

(k)
j }), we can define

a derivative operator δ, acting on K, as follows :

δxi = fi(x) + gi(x)u(0) for all i = 1, . . . , n

δu
(k)
j = u

(k+1)
j for k ≥ 0 and for all j = 1, . . . , m

δF ({xi, u
(k)
j }) =

n∑
i=1

(∂F/∂xi)δxi +
∑

j=1,...,m;k≥0

(∂F/∂u
(k)
j )δu(k)

j
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The resulting differential field is the starting point for a number of con-
structions that will be used in characterizing the system theoretical properties
of Σ.

1.3.1 One-forms

We consider now the infinite set of symbols

dC = {dxi, i = 1, . . . , n; du
(k)
j , j = 1, . . . , m, k ≥ 0} (1.6)

and we denote by E the vector space spanned over K by the elements of dC,
namely

E = spanKdC. (1.7)

Any element in E is a vector of the form

v =
n∑

i=1

Fidxi +
∑

j=1,...,m;k≥0

Fjkdu
(k)
j

where only a finite number of coefficients Fjk are nonzero elements of K. We
can define now an operator from K to E , which by abuse of notation will be
denoted by d, in the following way:

dF ({xi, u
(k)
j }) =

n∑
i=1

(∂F/∂xi)dxi +
∑

j=1,...,m;k≥0

(∂F/∂u
(k)
j )du

(k)
j

The elements of E will be called one-forms and we will say that v ∈ E is an
exact one-form, or that it is integrable, if v = dF for some F ∈ K. We will
usually refer to dF as to the differential of F .

Example 1.9. Let F = sin(x1x2) ∈ K. Then,

dF = cos(x1x2) [x2dx1 + x1dx2] ∈ E
The vector space of one-forms E can be endowed with a differential struc-

ture by defining a derivative operator Δ, in terms of the derivative operator
δ and of the differential operator d acting on K, as follows:

Δv = Δ(
∑n

i=1 Fidxi +
∑

j=1,...,m;k≥0 Fjkdu
(k)
j )

=
∑n

i=1(δFidxi + Fid(δxi)) +
∑

j=1,...,m;k≥0(δFjkdu
(k)
j + Fjkd(δu(k)

j ))

1.3.2 Two-forms

We consider now the infinite set of symbols

∧dC = {dxi ∧ dxi′ ; du
(k)
j ∧ du

(k′)
j′ ; dxi ∧ du

(k)
j ; du

(k)
j ∧ dxi, for i = 1, . . . , n

i′ = 1, . . . , n; j = 1, . . . , m; j′ = 1, . . . , m; k ≥ 0; k′ ≥ 0}
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and the vector space, that we denote by ∧E , spanned over K by the elements of
∧dC. In ∧E , we consider the equivalence relation R spanned by the equalities

dα ∧ dβ = −dβ ∧ dα (1.8)

Note that the above relation implies that dxi ∧ dxi = 0 for every i and
du

(k)
j ∧ du

(k)
j = 0 for every j and k.

The vector space ∧E mod R will be denoted in the following by E(2). The
elements of E(2) are called two-forms.
We can define now an operator from E to E(2), that by abuse of notation will
again be denoted by d, in the following way :

dv = d(
n∑

i=1

Fidxi +
∑

j = 1, . . . , m
k ≥ 0

Fjkdu
(k)
j )

=
∑

i = 1, . . . , n
i′ = 1, . . . , n

(δFi/δxi′)dxi′ ∧ dxi +
∑

i = 1, . . . , n
j = 1, . . . , m

k ≥ 0

(δFi/δu
(k)
j )du

(k)
j ∧ dxi

+
∑

i = 1, . . . , n
j = 1, . . . , m

k ≥ 0

(δFjk/δxi)dxi ∧ du
(k)
j

+
∑

j = 1, . . . , m
j′ = 1, . . . , m

k ≥ 0

(δFjk/δu
(k)
j′ )du

(k)
j′ ∧ du

(k)
j ) mod R

A canonical representative of dv is given by

dv =
∑
i>i′

(δFi/δxi′ − δFi′/δxi)dxi′ ∧ dxi

+
∑

i=1,...,n;j=1,...,m;k≥0

(δFi/δu
(k)
j − δFjk/δxi)du

(k)
j ∧ dxi

+
∑

j>j′;k≥0;k′≥0

(δFjk/δu
(k′)
j′ − δFj′k′/δu

(k)
j )du

(k′)
j′ ∧ du

(k)
j

Example 1.10. Let v = dx1 − (x1/x2)dx2, then

dv = 0 − (1/x2)dx1 ∧ dx2
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1.3.3 s-forms

We need now to consider a more general construction of the same kind as that
giving rise to E(2). To this aim, let us consider, for any integer s, the infinite
set of symbols

∧sdC = {dξ0 ∧ dξ1 ∧ . . . ∧ dξs; ξi ∈ C; i = 0, . . . , s}
and the vector space that we denote by ∧sE spanned over K by the elements of
∧sdC. In ∧sE , we consider the equivalence relation R spanned by the equalities

dξi0 ∧ dξi1 ∧ . . . ∧ dξis = (−1)σdξj0 ∧ dξj1 ∧ . . . ∧ dξjs

where σ is the signature of the permutation
(

i0 . . . is
j0 . . . js

)
. The vector space

∧sE mod R will be denoted in the following by E(s+1), its elements are called
(s + 1)-forms.
Note that the above relation implies that dξi0∧dξi1∧. . .∧dξis = 0 if dξij = dξik

for some index j and k.
By the constructions described above, we obtain a set of vector spaces E ,
E(2), . . . , E(s) that are related to the system Σ. These algebraic objects will
be the basic tools for analyzing the system properties of Σ in Chapters 3 to
6 and for solving several design problems in the second part of the book.

1.3.4 Exterior Product

The exterior product or wedge product of a p-form ω1 and a q-form ω2, denoted
by ω1 ∧ω2, can now be defined as the (p+ q)-form whose representative, if ω1

is represented as
ω1 =

∑
i=1,...,k

Fiξ
(p)
i

with ξ
(p)
i ∈ ∧p−1dC and ω2 is represented as

ω2 =
∑

j=1,...,h

Gjξ
(q)
j

with ξ
(q)
j ∈ ∧q−1dC, is given by

ω1 ∧ ω2 =
∑

i=1,...,k;j=1,...,h

FiGjξ
(p)
i ∧ ξ

(q)
j

It can easily be verified that the exterior product is associative. Moreover, it
induces a map ∧ : E(p) ×E(q) → E(p+q) given, quite obviously, by ∧(ω1, ω2) =
ω1 ∧ ω2.



14 1 Preliminaries

1.4 Frobenius Theorem

In this section, we investigate the problem of checking the exactness of a given
one-form v ∈ E , namely, if v = dϕ for some ϕ ∈ K. To begin with, let us first
state some elementary facts.

Definition 1.11. A one-form v ∈ E is closed if dv = 0.

Proposition 1.12. Any exact one-form is closed.

Proof. Consider a function ϕ ∈ K of n variables, say ξ1, · · · , ξn with ξi ∈ C.
Then, dϕ =

∑i=n
i=1

∂ϕ
∂ξi

dξi and

d(dϕ) =
∑

i,j
∂2ϕ

∂ξj∂ξi
dξj ∧ dξi

=
∑

i≥j

(
∂2ϕ

∂ξi∂ξj
− ∂2ϕ

∂ξj∂ξi

)
dξi ∧ dξj

= 0

Poincaré’s Lemma (see [19] for a proof) establishes that the converse of Propo-
sition 1.12 is true only locally.

Lemma 1.13. Poincaré’s Lemma Let v be a closed one-form in E. Then,
there exists ϕ ∈ K such that locally v = dϕ.

Example 1.14. A typical example of a closed form that is not exact is the fol-
lowing. In IR2, consider the closed one-form ω = x2

x2
1 + x2

2

dx1− x1

x2
1 + x2

2

dx2. Lo-

cally, around any point (x1, x2) such that x2 �= 0, ω = d [arctan(x1/x2)], and
around any point (x1, x2) such that x2 = 0 and x1 �= 0, ω = d [arctan(−x2/x1)].
But there is no function ϕ such that ω = dϕ globally.

A requirement weaker than exactness for a one-form v is that of being
colinear to an exact form, i.e. there exist λ and ϕ in K such that λv = dϕ or,
equivalently, that spanK{v} = spanK{dϕ}. A function λ such that λv = dϕ is
called an integrating factor. The characterization of this property is a special
case of the Frobenius Theorem that will be stated later.

Theorem 1.15. Given v ∈ E, there exists a function ϕ such that spanK{v} =
spanK{dϕ} if and only if

dv ∧ v = 0

Proof. Necessity: Since dϕ ∈ spanK{v}, there exists a nonzero function α such
that αv = dϕ. Hence, αv is exact, that is, d(αv) = 0. From

0 = d(αv) = dα ∧ v + αdv
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it follows
0 = d(αv) ∧ v = 0 + αdv ∧ v

which yields the desired result.
Sufficiency: The proof of sufficiency is not elementary and for that the reader
is referred to [19, 46].

To generalize the result of Theorem 1.15, let us introduce the following defi-
nition.

Definition 1.16. A subspace V ⊂ E is closed, or integrable, if V has a basis
which consists only of closed forms.

Theorem 1.17. Frobenius Theorem Let V = spanK{ω1, . . . , ωr} be a sub-
space of E. V is closed if and only if

dωi ∧ ω1 ∧ . . . ∧ ωr = 0, for any i = 1, . . . , r

Example 1.18.

• The one-form ω = x1dx1 + x2dx2 is closed according to Definition 1.11.
In fact, ω = 1

2d(x2
1 + x2

2).
• The one-form ω = dx1 + x1dx2 is not closed since dω = dx1 ∧ dx2 �= 0.

However, the vector space spanK{ω} is integrable since dω ∧ ω = 0 and
one may choose the integrating factor α = 1/x1.

The version of the Frobenius Theorem stated above is dual of the version
commonly presented in the literature. The reason for this choice is that it
fits more naturally with our formalism. The reader can find a proof of the
Theorem in [19], or also, in dual terms, in [46, 118].
The necessary and sufficient condition of the Frobenius Theorem is verified,
in particular, if V has dimension n − 1 and its generators depend on n inde-
terminates. Let us state and prove explicitly that this results.

Proposition 1.19. Let V = spanK{ω1, . . . , ωn−1} be a (n − 1)-dimensional
subspace of E and assume that its generators ωi, for i = 1, ..., n − 1, depend
on n indeterminates, say x1, ..., xn. Then, V is closed (integrable).

Proof. Denote by X(x), where x = (x1, ..., xn)T , the annihilator of V , so that

ωi(x) · X(x) ≡ 0

for any i = 1, ..., n − 1. Without loss of generality, assume that

X(x) =

⎡
⎢⎢⎢⎣

1
f2(x)

...
fn(x)

⎤
⎥⎥⎥⎦
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and consider the differential equation

ẋ(t) = X(x(t))

with initial condition x(0) = x0. The solution ΦX
t (x0) of such an equation can

be written in the form

ΦX
t (x0) =

⎡
⎢⎢⎢⎣

t + x10

φ2(t, x0)
...

φn(t, x0)

⎤
⎥⎥⎥⎦

The variable t can be formally eliminated using the equality t = x1 − x10, so
that

xi = φi(x1 − x10, x0)

for i = 2, ..., n. Defining⎡
⎢⎢⎢⎣

p1(x)
p2(x)

...
pn(x)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x1

−x2 + φ2(x1 − x10, x0)
...

−xn + φn(x1 − x10, x0)

⎤
⎥⎥⎥⎦

one easily checks that ṗi = 0 or, equivalently, that dpi(x) ⊥ X(x) for i =

2, ..., n. Since rank
∂p(x)
∂x

= n, p(x) defines a change of coordinates and V =

spanK{dp2, . . . ,dpn}.

1.5 Examples

The algebraic formalism of one-forms is devised mainly for facilitating com-
putations involving gradients and Jacobian matrices.

Note, in particular, that the differential dy of the output of the control
system (1.1) is a vector in E :

dy =
∂h

∂x1
dx1 + · · · + ∂h

∂xn
dxn

The differential of the kth time derivative of y is in E as well.

Example 1.20. The one-form ω1 = dx1 ∈ E may be thought of, with respect
to the basis dC, as the row vector

[
1 0 0 · · · ]. This row vector is the Jacobian[

∂f
∂x1

∂f
∂x2

· · ·
]

of the function f(x) = x1, which belongs to K, and it is
obviously exact.
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Example 1.21. Let us consider the one-form ω2 = x3dx1 ∈ E , which may be
identified with the row vector ω2 =

[
x3 0 0 · · · ]. The exactness or integrability

of ω2 is equivalent to the existence of a function ψ ∈ E , such that ω2 =[
∂ψ
∂x1

∂ψ
∂x2

∂ψ
∂x3

· · ·
]
. If such a ψ does exist, then necessarily it solves the

system ⎧⎨
⎩

∂ψ
∂x1

= x3

∂ψ
∂x3

= 0

Using second-order derivatives, one concludes that there is no solution since

∂

∂x3

∂ψ

∂x1
= 1 �= ∂

∂x1

∂ψ

∂x3
= 0

Examples of this kind motivate a formal study of second-order derivatives
and give rise to the notion of two-forms, that generalize somehow Hessian
matrices, consisting of second-order partial derivatives.

Example 1.22. Let v = (1/x2)dx1 − (x1/x2
2)dx2. To check the closure (or

local exactness) of v, one may proceed as above and compute ∂
∂x2

1
x2

and

∂
∂x1

(
−x1

x2
2

)
. The two-form dv embodies these computations:

dv =
∂

∂x2

(
1
x2

)
dx2 ∧ dx1 +

∂

∂x1

(−x1

x2
2

)
dx1 ∧ dx2 (1.9)

= −(1/x2
2)dx2 ∧ dx1 − (1/x2

2)dx1 ∧ dx2 (1.10)

Now, the closure of v results from the fact that ∂
∂x2

1
x2

= ∂
∂x1

−x1
x2
2

, or, since in

E(2), dx1 ∧ dx2 = −dx2 ∧ dx1, then dv = 0. In fact, v = d(x1/x2).
In the case of Example 1.20 and of Example 1.21, respectively,

dω1 = d(dx1) = 0

dω2 = d(x3dx1) = dx3 ∧ dx1 + x3d(dx1) = dx3 ∧ dx1

where dω2 �= 0 displays the fact that ω2 is not exact. In fact, as a linear
combination of the symbols dx1 ∧ dx3 and dx3 ∧ dx1, dω2 reads as

dω2 = 0 dx1 ∧ dx3+ 1 dx3 ∧ dx1

↓ ↓
candidate for candidate for

∂
∂x1

∂ψ
∂x3

∂
∂x3

∂ψ
∂x1

Since ∂
∂x1

∂ψ
∂x3

= ∂
∂x3

∂ψ
∂x1

for any ψ and dx1 ∧ dx3 = −dx3 ∧ dx1, dω2 �= 0
formalizes the fact that there is no function ψ ∈ K such that ω2 = dψ.
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Problems

1.1. Prove that invertibility is a generic property for real square matrices.

1.2. Prove that square, symmetric, real matrices are not generically positive
definite.

1.3. The dynamic system Σ defined by (1.1) is linear if the vector field g(x)
is constant, namely, g(x) = B for a suitable matrix B, and the functions f(x)
and h(x) are linear, namely f(x) = Ax and h(x) = Cx for suitable matrices A
and C. For a linear system Σ, controllability, namely, the possibility to drive
the state to zero in finite time by applying a suitable input u(t), is equivalent
to the condition

rank[BABA2B...An−1B] = n

n being the dimension of A. Prove that controllability is a generic property
of linear systems.

1.4. Prove that the function f(x) =
{

e−1/x2
, ifx < 0

0, ifx ≥ 0
is not analytic at x = 0.

1.5. Integration of one-forms
Check if the following one-forms are exact and in case of a positive answer,
find a function F whose differential coincides with them.
(a) (1 + cos(x + y))dx + cos(x + y)dy

(b)
x + 2y

x3y
dx +

1
xy2

dy

(c)
x

x2 + y2
dx +

y

x2 + y2
dy

(d) − y

x2 + y2
dx +

x

x2 + y2
dy

(e)
x

x2 + y2 + z2
dx +

y

x2 + y2 + z2
dy +

z

x2 + y2 + z2
dz

(f) − y + z

(x − y − z)2
dx +

x

(x − y − z)2
dy +

x

(x − y − z)2
dz

1.6. Check if the one-form ω = (−x3cos(y))dx + (xsin(y))dy is closed. If ω
is not a closed one-form, check if an integrating factor exists and in case of a
positive answer, compute it.

1.7. Exterior differentiation
Compute the differential of the following differential forms:
(a) sin(x + y)dx + (x2 + 2y)dy + zdz
(b) cos(z)dx
(c) (x2)dx

∧
dy

(d) (ex)dx
∧

dy + x dy
∧

dz
(e) dx

∧
dy
∧

dz
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1.8. Prove that dξi0 ∧ dξi1 ∧ . . .∧ dξis = 0 if dξij = dξik
for some index j and

k.

1.9. Exterior product
Compute the exterior product between k-forms.
(a) dx

∧
(sin(y)dy

∧
(x dx + (y2)dy)

(b) (cos(xy)dx + (y3)dy)
∧

(z dx + y dz)
(c) (2x dx + (x + y)2dy + (1 − z)dz)

∧
(ydx − xdz)

(d) (ex)dx
∧

dy + x dy
∧

dz
(e) (dx

∧
dy)
∧

(cos(x + y)dy
∧

dz)



2

Modeling

Dynamic systems may be described in several ways. Physics often yields de-
scriptions in terms of high order differential equations that involve input and
output variables. Starting from this situation, a typical control theoretical
problem is that of restating such input-output descriptions in terms of cou-
pled, first-order differential equations, introducing new instrumental internal
variables or states. For linear systems, it is possible to switch easily from input-
output, or external, representation to state-space, or internal, representation,
using the Laplace transform to change the domain of the representation. Al-
though such a tool for symbolic computation is not available for nonlinear
systems, we show, in this chapter, that internal, state-space representation
can be derived from input-output descriptions (their construction will be de-
scribed as the realization problem) and conversely, external, input-output de-
scriptions can be derived from state-space descriptions (their construction will
be described as the state elimination problem) in a nonlinear context, too.
To develop the tools required for dealing with this kind of problem, we will
start by considering first the state elimination problem and, then, we will
tackle the more relevant problem of constructing state-space representations
from input/output relations.

2.1 State Elimination

Given the internal, or state-space, description of a system Σ, it is possible, in
a sense to be made precise, to construct a representation of the relationship
between input and output that it defines in a form that does not involve
state variables. Although the validity of such a representation is only local,
it nevertheless turns out to be useful for understanding the system behavior
and, more important, its construction helps in clarifying the inverse problem
of defining state variables and state equations from an input/output relation.
To describe the situation, we can consider, without additional difficulties,
internal representations more general than (??), i.e., representations of the
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form {
ẋ = f(x, u, . . . , u(s))
y = h(x, u, . . . , u(s))

(2.1)

where, as usual, x ∈ IRn, u ∈ IRm, and y ∈ IRp, and the entries of f and
h, which depend also on a finite number of time derivatives of the input, are
analytic functions.
So, given a system Σ of the form (2.1), the problem is to find, if possible, a
set of input-output differential equations of the form

Fi(y, ẏ, . . . , y(k), u, u̇, . . . , u(γ)) = 0 , i = 1, . . . , p (2.2)

which admits as solution any pair (y(t), u(t)) such that (y(t), u(t), x(t)) is
a solution, for some x(t), of (2.1). Such a set of differential equations, if any
exists, will be called an external, or input-output, representation of the system
Σ described by (2.1).

Theorem 2.1. Given a system Σ of the form (2.1), where the entries of f
and h are analytic functions, there exist an integer γ and an open dense subset
V of IRn+mγ such that, in the neighborhood of any point of V, there exists an
input-output representation of the system of the form (2.2).

Proof. The first step in constructing an input-output representation consists
of applying a suitable change of coordinates. To this aim, let us denote by s1

the minimum nonnegative integer such that

rank
∂(h1, . . . , h

(s1−1)
1 )

∂x
= rank

∂(h1, . . . , h
(s1)
1 )

∂x

If ∂h1/∂x ≡ 0 we define s1 = 0. Analogously for 1 < j ≤ p, let us denote by
sj the minimum integer such that

rank
∂(h1, . . . , h

(s1−1)
1 ; . . . ; hj , . . . , h

(sj−1)
j )

∂x

= rank
∂(h1, . . . , h

(s1−1)
1 ; . . . ; hj, . . . , h

(sj)
j )

∂x

If

rank
∂(h1, . . . , h

(sj−1−1)
j−1 )

∂x
= rank

∂(h1, . . . , h
(sj−1−1)
j−1 , hj)

∂x

we define sj = 0. Write K = s1 + . . . + sp. The vector

S = (h1, . . . , h
s1−1
1 , . . . , hp, . . . , h

sp−1
p )

where hj does not appear if sj = 0, satisfies the following relation

rank
[
∂S

∂x

]
= K, for almost every x
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It will be established in Chapter 4 that the case K < n corresponds to
nonobservable systems. In this case, there exist analytic functions g1(x), . . . ,
gn−K(x) such that the matrix

J =
∂(S, g1, . . . , gn−K)

∂x

has full rank n. Then the system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃1 = h1(x, u, . . . , u(α))
...

x̃s1 = h
(s1−1)
1 (x, u, . . . , u(α+s1−1))

x̃s1+1 = h2(x, u, . . . , u(α))
...

x̃s1+s2 = h
(s2−1)
2 (x, u, . . . , u(α+s2−1))

...
x̃s1+s2+...+sp = h

(sp−1)
p (x, u, . . . , u(α+sp−1))

x̃s1+s2+...+sp+i = gi(x, u, . . . , u(γ)) i = 1, . . . , n − K

(2.3)

is of the form Fi(x, x̃, u, . . . , u(γ)) = 0, i = 1, . . . , n with

∂(F1, . . . , Fn)/∂(x1, . . . , xn) = J

To avoid the introduction of new notations, it is not restrictive to assume
γ ≥ max{α+si−1, i = 1, . . . , p}. The determinant of J is an analytic function
whose set of zeros has an empty interior, so there exists an open dense subset
V of IRn+mγ such that detJ is different from zero at every point of V and
the implicit function theorem applies. Therefore there exist n functions

xi = φi(x̃, u, . . . , u(γ)) for 1 ≤ i ≤ n

which define a local diffeomorphism φ parametrized by u, . . . , u(γ):

x = φ(x̃) (2.4)

By applying the change of coordinates induced by (2.4), the system (2.1)
becomes



24 2 Modeling⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃x1 = x̃2

˙̃x2 = x̃4

...
˙̃xs1 = h

(s1)
1 (φ(x̃), u, . . . , u(γ))

˙̃xs1+1 = x̃s1+2

...
˙̃xs1+s2 = h

(s2)
2 (φ(x̃), u, . . . , u(γ))

...
˙̃xs1+···+sp = h

(sp)
p (φ(x̃), u, . . . , u(γ))

˙̃xs1+···+sp+i = gi(x̃), u, . . . , u(γ)) i = 1, . . . , n − K
y1 = x̃1

y2 = x̃s1+1

...
yp = x̃s1+···+sp−1+1

(2.5)

In the neighborhood of any point where det J �= 0, also

∂h
(si)
i

∂x
∈ spanK

{
∂h1

∂x
, . . . ,

∂h
(s1−1)
1

∂x
,
∂h2

∂x
, . . . ,

∂h
(si−1)
i

∂x

}

so that

∂h
(si)
i

∂x̃
= [c1 . . . cs1+···+si 0 . . . 0]J ∂x

∂x̃j

= [c1 . . . cs1+···+si 0 . . . 0] ej = 0 j > s1 + · · · + si

where ej is the jth column of the identity matrix. Therefore the functions
h

(si)
i (φ(x̃), u, . . . , u(γ)) depend only on x̃1, . . . , x̃s1+...+si .

Since the following identities hold,

y1 = x̃1,
ẏ1 = x̃2, . . . ,

y
(r)
1 = x̃1+r for r = 0, . . . , s1 − 1

...
yj = x̃s1+···+sj−1+1

ẏj = x̃s1+···+sj−1+2, . . . ,

y
(r)
j = x̃s1+···+sj−1+1+r for r = 0, . . . , sj − 1, j = 2, . . . , p

From (2.5), we get the input-output relations we were looking for:
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y
(s1)
1 = h

(s1)
1 (φ(y1, ẏ1, . . . , y

(s1−1)
1 ), u, . . . , u(γ))

...
y
(sj)
j = h

(sj)
j (φ(y1, . . . , y

(s1−1)
1 , yj , . . . , y

(sj−1)
j ), u, . . . , u(γ))

...
y
(sp)
p = h

(sp)
p (φ(y1, . . . , y

(s1−1)
1 , . . . , yp, . . . , y

(sp−1)
p ), u, . . . , u(γ))

(2.6)

The input-output equations (2.6) are not uniquely defined since, for in-
stance, if K is less than n, different choices of the functions gi(x, u, . . . , u(γ))
produce a different system (2.3).
Instead of {s1, . . . , sp}, it is possible to use the observability indices as defined
in Chapter 4 to derive an analogous input-output equation.

2.2 Examples

Example 2.2. For the system ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = x3u1

ẋ2 = u1

ẋ3 = u2

y1 = x1

y2 = x2

we have ẏ1 = x3u1, ÿ1 = u2u1 + x3u̇1, and finally

ÿ1 = u2u1 + (ẏ1/u1)u̇1

The last equation holds at every point in which u1 �= 0. For the second output,
ẏ2 = u1 immediately.

The following example shows that for a more general nonlinear system, where
ẋ does not appear explicitly, such as

F (x, ẋ, u, . . . , u(ν)) (2.7)

the method described above cannot be applied.

Example 2.3. Consider the system{
(ẋ − u)2 = 0

y = x

The implicit function theorem cannot be invoked to obtain x, since for every
x and every u, ∂(ẋ − u)2/∂x = 0. By the way, an input-output relation for
this example is given by

(ẏ − u)2 = 0

or by
(ẏ − u) = 0
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Results similar to those described above may be found in [156]. A state elim-
ination method which yields global results is studied in [44].

2.3 Generalized Realization

Let us consider now the problem of going from an external, input-output rep-
resentation of a dynamic system to an internal, state-space representation,
that, in a sense to be made precise, defines the same relation between inputs
and outputs as the external representation. We are interested in what is called
the realization problem. In general, as an outcome of the realization process,
starting from an external representation, one would like to obtain internal,
state-space representations of the form (1.4) or, at least, of the form (1.5).
These will be termed classical realizations; more general representations, as
those we will discuss in this section, will be termed generalized realization.
To begin with, we first recall some results from [54], which follow quite nat-
urally from elementary manipulation of input-output equations and which
yield a generalized realization. In the next section, a necessary and sufficient
condition is given for the existence of a classical realization in the single-
input/single-output (SISO) case.
Consider an input-output differential equation of the form

F (y, . . . , y(k), u, . . . , u(s)) = 0 (2.8)

where u and y are, respectively, a scalar input and a scalar output, F is
a meromorphic function of its arguments; and ∂F

∂y(k) is generically nonzero.
An internal representation of the system described by (2.8) can easily be
constructed by introducing the new variable x = (x1, . . . , xk), defined by

(x1, . . . , xk) = (y, . . . , y(k−1)) (2.9)

This yields the following set of implicit state equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = x2

...
ẋk−1 = xk

F (x1, . . . , xk, ẋk, u, . . . , u(s)) = 0

(2.10)

The assumption about ∂F
∂y(k) and the implicit function theorem , now, allow

us to write, at least locally,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 = x2

...
ẋk−1 = xk

ẋk = ϕ(x, u, u̇, . . . , u(s))
y = x1

(2.11)
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Equations (2.11) give a representation of the input-output relation described
by (2.8) with internal variables. Compared with (1.4), the representation given
by (2.11) can be said to be a generalized realization; the adjective “general-
ized” accounts for the presence of derivatives of u. According to this, the
variable x can be interpreted as a generalized state variable. In addition, note
that the application of the implicit function theorem, beside being noncon-
structive, does not guarantee that ϕ is a meromorphic function.

Example 2.4. Consider the input-output equation ẏ2 = y + u. The above pro-
cedure yields the implicit state equations

ẋ2 = x + u

or, locally, one of the following explicit realizations, depending on whether
ẏ > 0 or ẏ < 0. {

ẋ =
√

x + u
y = x

(2.12)

{
ẋ = −√

x + u
y = x

(2.13)

Note that the right-hand side of the state equations in the above representa-
tions is not meromorphic at the origin.

In general, the above procedure does not yield classical realizations of the form
(1.4). Also linear input-output relations, in case transmission zeros are present,
give rise, in this way, to generalized realizations. It can be said that, in general,
the presence of derivatives of u is somehow related to the presence of zero
dynamics (this concept will be made more precise in Section 5.6, see also [88])
However, as we will show in the next section, generalized realizations of the
form (2.11) may be transformed under suitable hypotheses into a realization
containing no derivatives of u.

Example 2.5. Consider the linear input-output relation ÿ = u + u̇ that cor-
responds to the transfer function s+1

s2 , having a zero in s = −1. Although
the input-output relation is linear, the above procedure yields a generalized
realization: ⎧⎨

⎩
ẋ1 = x2

ẋ2 = −u − u̇
y = x1

The notions of controllability/accessibility and of observability that one can
use in characterizing the structure of internal representations are reported in
Chapters 3 and 4. Without going into the details now, we mention that, with
respect to those notions, realization (2.11) is in general observable, but not
necessarily accessible . In this sense, it is not minimal.
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2.4 Classical Realization

Conditions for ensuring the existence of a classical realization of the form (1.4),
in particular containing no derivatives of the input, are fully characterized in
[33] (see also [28, 47, 56, 91, 92, 150, 151, 158]). There exist simple input-
output relations which do not admit a classical realization. A typical example
in this sense is given by the input-output relation ÿ = u̇2.
Here we introduce an elementary result that fully solves the problem for the
input-output relations having the particular form

y(k) = ϕ(y, ẏ, . . . , y(k−1), u, u̇, . . . , u(s)). (2.14)

where ϕ is a meromorphic function of its arguments and ∂ϕ
∂y(k) is generically

nonzero. The input-output relation (2.14) admits a realization if and only if the
right-hand side of (4.17) has a special polynomial structure in the derivatives
of u. To investigate this structure, consider the dynamic system Σe whose
input is u(s+1) and whose state is (y, ẏ, . . . , y(k−1), u, u̇, . . . , u(s)).

Σe :
d

dt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
...

y(k−2)

y(k−1)

u
...

u(s−1)

u(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẏ
...

y(k−1)

ϕ
u̇
...

u(s)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u(s+1) (2.15)

= fe + geu
(s+1)

Given system (2.14), define the field K of meromorphic functions in a finite
number of variables y, u, and their time derivatives. Let E be the formal vector
space E = spanK{dϕ | ϕ ∈ K}.

Define the following subspace of E
H1 = spanK{dy, dẏ, . . . ,dy(k−1), du, . . . , du(s)}

Obviously, any one-form in H1 has to be differentiated at least once to depend
explicitly on du(s+1). Let H2 denote the subspace of E which consists of all
one-forms that have to be differentiated at least twice to depend explicitly on
du(s+1). From (2.15), one easily computes

H2 = spanK{dy, dẏ, . . . , dy(k−1), du, . . . , du(s−1)}
H2 is a subspace of H1 which is more generally computed as

H2 = spanK{ω ∈ H1 | ω̇ ∈ H1} (2.16)
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More generally, define Hi as the subspace of E which consists of all one-
forms that have to be differentiated at least i times to depend explicitly on
du(s+1).

More precisely, the subspaces Hi are defined by induction as follows for
i ≥ 2.

Hi+1 = spanK{ω ∈ Hi | ω̇ ∈ Hi}
These subspaces will be used extensively later in this book and especially

in Chapter 3.

2.5 Input-output Equivalence and Realizations

To introduce the equivalence of input-output systems and to study their min-
imal state-space realization, we will use systems Σe, as defined in (2.15).
Consider H∗

∞ = spanK{ω ∈ H∗
1 | ω(k) ∈ H∗

1 , ∀k ≥ 0} = 0. Each nonzero
vector in H∗∞ is said to be autonomous for system (2.14).

2.5.1 Irreducible Input-output Systems

In this section, we will formalize a reduction algorithm to obtain the notion
of input-output equivalence and a definition of realization.

Definition 2.6 (Irreducible input-output system). System (2.14) is said
to be an irreducible input-output system if the associated system (2.15) sat-
isfies

H∞ = 0

Example 2.7. The input-output system ÿ = yu2 + yu̇ is irreducible since

d
dt

⎛
⎜⎜⎝

y
ẏ
u
u̇

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ẏ
yu2 + yu̇

u̇
0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ ü

is such that H∞ = 0. It is worth noting that the set of solutions (u(t), y(t))
of ẏ = yu is a subset of the set of solutions of ÿ = yu2 + yu̇, but the systems
are not ”equivalent” according to the forthcoming Definition 2.13.

Example 2.8. ÿ = u̇ + (ẏ − u)2 is not irreducible since

d
dt

⎛
⎜⎜⎝

y
ẏ
u
u̇

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ẏ
u̇ + (ẏ − u)2

u̇
0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ ü

is not irreducible since d(ẏ − u) ∈ H∞ and we will claim that ẏ = u is an
irreducible input-output system of ÿ = u̇ + (ẏ − u)2.
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2.5.2 Reduced Differential Form

We are interested in minimal realizations, i.e. of the lowest order. We intro-
duce definitions of reduced differential form, reduced input-output system and
irreducible differential form, etc. to reach that goal.

Definition 2.9 (Reduced differential form). An exact form dφ′ ∈ H∞ is
said to be a reduced differential form of system (2.14) if

(a) dφ′ �≡ 0
(b) dφ′ ∈ H∞.

Definition 2.10 (Reduced input-output system). Let dφ′ be a reduced
differential form, that produces the differential equation

φ′(y, · · · , y(k′−1), y(k′), u, · · · , u(s′)) = 0 (2.17)

such that ∂φ′/∂y(k′) �= 0, ∂φ′/∂u(s′) �= 0, and ∂2φ′/∂y(k′)2 ≡ 0 with k′ > 0,
s′ ≥ 0. Equation (2.17) has a unique solution under the condition ∂φ′/∂y(k′) �≡
0

y(k′) = ϕ′(y, · · · , y(k′−1), u, · · · , u(s′)) (2.18)

Then (2.18) is called a reduced input-output system of system (2.14).

Definition 2.11 (Irreducible differential form). If (2.18) is an irre-
ducible input-output system in the sense of Definition 2.6, then d(y(k′) − ϕ′)
is said to be an irreducible differential form of (2.14).

Example 2.12 (Example 2.8 cont’d). d(ẏ−u) ∈ H∞ and ẏ = u is an irreducible
system. Thus, φ′ = ẏ − u = 0 is an irreducible input-output system of ÿ =
u̇ + (ẏ − u)2.

It is not true that any input-output system has an irreducible input-output
system. Consider

ÿ =
ẏu̇

u
(2.19)

dφ′ = d(ẏ/u) is a reduced differential form of (2.19) according to Definition
2.9. Thus, system (2.19) is not irreducible. Let φ′ = ẏ/u = 0, which is not an
irreducible input-output system in the sense of the above Definition. Therefore,
system (2.19) does not admit any irreducible input-output system.

In the special case of linear time-invariant systems, the reduction procedure
corresponds to a pole/zero cancellation in the transfer function. For nonlinear
systems, the above procedure also generalizes the so-called primitive step in
[28].
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2.5.3 Input-output Equivalence

We restrict our attention to the family of input-output systems that admit an
irreducible input-output system: see Definition 2.6. Therefore, it is possible to
introduce an equivalence relation on the family.

Definition 2.13 (Input-output equivalence). Two input-output systems
are said to be input-output equivalent if they have the same irreducible input-
output system representation

y(κ) = ϕ(y, . . . , y(κ−1), u, . . . , u(σ)) (2.20)

Example 2.14. The two systems

ÿ = u̇ − 2(ẏ − u)2

and
y(3) = ü

do admit the same irreducible input-output system, ẏ = u.

2.5.4 Realizations

A general definition of realization is given, that describes the relationships
between state-space equations (1.1) and input-output equations (2.14).

An algorithm realizing the state-space systems (1.1) from input-output
systems (2.14) will be provided in Section 2.8.1, as well as a necessary and
sufficient condition for the existence of such a realization.

Definition 2.15 (Realization). A state-space system (1.1) is said to be a
realization of the input-output system (2.14) if the elimination of the state
variables in (1.1) yields an input-output equation described by

y(κ) = φ(y, . . . , y(κ−1), u, . . . , u(σ))

which is input-output equivalent to (2.14).

The system (2.14) is said to be realizable if there exists a realization in
the sense of Definition 2.15.

2.6 A Necessary and Sufficient Condition for the
Existence of a Realization

We make use here of the subspaces introduced in (2.16), to derive a full char-
acterization of the existence of a classical realization.
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Theorem 2.16. There exists an observable state-space system{
ẋ = f(x, u)
y = h(x) (2.21)

which is a realization for (2.14) if and only if

• k > s
• and, Hi is integrable for each i = 1, . . . , s + 2.

Proof. Sufficiency: Let {dξ1, . . . ,dξk} be a basis of Hs+2. From the construc-
tion of the subspaces Hi,

Hs+1 = Hs+2 ⊕ spanK{du}
Hs = Hs+2 ⊕ spanK{du, du̇}

...
H1 = Hs+2 ⊕ spanK{du, . . . , du(s)}

(2.22)

Introduce the following coordinate transformation for the system (2.15):

x1 = ξ1(y, ẏ, . . . , u(s))
...

xk = ξk(y, ẏ, . . . , u(s))
xk+1 = u

...
xk+s+1 = u(s)

(2.23)

From Hs+2 ⊂ Hs+1, it follows dξ̇i =
∑k

j=1 αdξ + βdu, for each j = 1, . . . , k.
Let x = (x1, . . . , xk). Thus, at least locally,

ẋ = f(x, u) (2.24)

The assumption k > s indicates that the output y depends only on x.
Necessity: Assume that the observable state-space system

ẋ = f(x, u)
y = h(x)

is a realization for the input-output system (2.14). Since the state-space sys-
tem is proper, necessarily k > s.

H1 = spanK{dx, du, . . . , du(s)}
...

Hs+1 = spanK{dx, du}
Hs+2 = spanK{dx}

From (2.23), the spaces Hi are integrable as expected.
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Example 2.17. Let ÿ = u̇2, and compute

H1 = spanK{dy, dẏ, du, du̇}
H2 = spanK{dy, dẏ, du}
H3 = spanK{dy, dẏ − 2u̇du)}

Since H3 is not integrable, there does not exist any state-space system gener-
ating ÿ = u̇2. This can be checked directly, or using some results in [33].

Example 2.18. Let ÿ = u2. The conditions of Theorem 2.16 are fulfilled and
the state variables x1 = y and x2 = ẏ yield

ẋ1 = x2

ẋ2 = u2

y = x1

whose state elimination yields ÿ = u2.

2.7 Minimal Realizations

The notion of minimality here is standard for linear systems and means that
the dimension of the state-space system equals the order of some reduced
transfer function.

A minimal realization can be obtained directly from the input-output equa-
tion. The notion of irreducible form is used as it is for linear time-invariant
systems. A minimal realization is obtained when constructing a realization as
in the proof of Theorem 2.16, or applying the algorithm in Section 2.8.1, to an
irreducible input-output system, whenever it exists. More precisely, one has

Theorem 2.19. Given an input-output system (2.14), assume that the con-
ditions in Theorem 2.16 are fulfilled. Then, there exists an observable and
controllable, i.e., minimal, realization of order k for (2.14), if and only if
(2.14) is an irreducible input-output system.

Proof. Given (2.14), the generating system (2.21) obtained from Theorem 2.16
is observable. The extended system (2.15) can be written in the coordinates
(2.23). It then reads as the composite system of system (2.24) and the control-
lable string of integrators u̇(i) = u(i+1), i = 0, ..., s. Thus, (2.15) is accessible
if and only if (2.24) is controllable. The result of Theorem 2.19 follows since
(2.15) is controllable if and only if (2.14) is irreducible, by Definition 2.6.

Example 2.20. Consider
φ = ÿ − ẏu − yu̇.
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Compute fe =

⎛
⎜⎜⎝

ẏ
ẏu + yu̇

u̇
0

⎞
⎟⎟⎠ and ge =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠. Thus, dφr = d(ẏ−yu) ∈ H∞. An

irreducible differential form of φ = 0 is dφr = d(ẏ−yu). A minimal realization
is obtained for φ = 0 as {

ẋ = xu
y = x

2.8 Affine Realizations

2.8.1 A Realization Algorithm

Under the conditions of Theorem 2.16, any basis of Hs+2 defines a state
space of the input-output system (2.14). The purpose of this section is to give
an algorithmic construction of a canonical affine state-space representation; it
results from a special choice of the basis for Hs+2 under some special structure
of the input-output equation. Consider the input-output equation (2.14).

Algorithm 2.21

Step 1.
Let r := k − s, then {dy, . . . , dy(r−1)} is a basis for

X1 := Hs+2 ∩ spanK{dy(j), j ≥ 0}

• If ∂2ϕ/∂(u(s))
2 �= 0, stop!

• If ∂2ϕ/∂(u(s))
2

= 0 and d(∂y(k)/∂u(s)) �= 0, define

y11 = ∂y(k)/∂u(s) (2.25)

If d(y(r) − ∂y(k)

∂u(s) u) �= 0, define

y12 = y(r) − ∂y(k)

∂u(s)
u (2.26)

y11 and y12 are called auxiliary outputs.

Step 2.

• If Hs+2 ∩ spanK{dy
(i)
11 , i ≥ 0} = 0, then stop!

• Let {dy, . . . ,dy(r−1); dy11, . . . ,dy
(r11−1)
11 } be a basis for

X21 := X1 + Hs+2 ∩ spanK{dy
(i)
11 , i ≥ 0}

where r11 = dimX21 − dimX1.
• If Hs+2 ∩ spanK{dy

(i)
12 , i ≥ 0} = 0, then stop!

• Let {dy, . . . ,dy
(r11−1)
11 ; dy12, . . . ,dy

(r12−1)
12 } be a basis for
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X2 := X21 + Hs+2 ∩ spanK{dy
(i)
12 , i ≥ 0}

where r12 = dimX2 − dimX21.
• If ∀� ≥ r1j, dy

(	)
1j ∈ X2, set s1j = −1, for j = 1, 2.

If ∃� ≥ r1j , dy
(	)
1j �∈ X2, then define s1j ≥ 0 as the smallest integer such that,

abusing the notation, one has locally

y
(r1j+s1j)
1j = y

(r1j+s1j)
1j (y(λ), y

(σ11)
11 , y

(σ12)
12 , u, . . . , u(s1j))

where 0 ≤ λ < r, 0 ≤ σ11 < r11 + s11, 0 ≤ σ12 < r12 + s12.
• If s11 ≥ 0 and ∂2y

(r11+s11)
11 /∂(u(s11))

2 �= 0
or if s12 ≥ 0 and ∂2y

(r12+s12)
12 /∂(u(s12))

2 �= 0 stop!
• If X2 + U = Y + U , and ∂2y

(r1j+s1j)
1j /∂(u(s1j))

2
= 0 whenever s1j ≥ 0,

then the algorithm stops and the realization is complete. Otherwise, define
the new auxiliary outputs, whenever d(∂y

(r1j+s1j)
1j /∂u(s1j)) �= 0, respectively,

d(y(r1j)
1j − ∂y

(r1j+s1j)
1j

∂u(s1j)
u) �= 0:

y21 =
∂y

(r11+s11)
11

∂u(s11)

y22 = y
(r11)
11 − ∂y

(r11+s11)
11
∂u(s11) u

y23 =
∂y

(r12+s12)
12

∂u(s12)

y24 = y
(r12)
12 − ∂y

(r12+s12)
12
∂u(s12) u

Step i+1.
From Step i, one has defined a set of numbers ri−1,j and si−1,j as well as the
auxiliary outputs

yi,2j−1 = ∂y
(ri−1,j+si−1,j)
i−1,j /∂u(si−1,j)

yi,2j = y
(ri−1,j)
i−1,j − ∂y

(ri−1,j+si−1,j)
i−1,j

∂u(si−1,j ) u
(2.27)

for some j ∈ {1, · · · , 2i−1}.
• If D∗

s+2 ∩ spanK{dy
(	)
i1 , � ≥ 0} = 0, then stop!

• Let {dy, . . . ,dy(r−1); . . . ; dyi1, . . . ,dy
(ri1−1)
i1 } be a basis for

Xi+1,1 := Xi + D∗
s+2 ∩ spanK{dy

(	)
i1 , � ≥ 0}

where ri1 = dimXi+1,1 − dimXi.
• If D∗

s+2 ∩ spanK{dy
(	)
ij , � ≥ 0} = 0 for j = 2, . . . , 2i−1, then stop!

• For j = 2, . . . , 2i−1, let



36 2 Modeling

{dy, . . . , dy(r−1); . . . ; dyij , . . . ,dy
(rij−1)
ij }

be a basis for

Xi+1,j := Xi+1,j−1 + D∗
s+2 ∩ spanK{dy

(	)
ij , � ≥ 0}

where rij = dimXi+1,j − dimXi+1,j−1. Set Xi+1 =
∑Xi+1,j

• If ∀� ≥ rij , dy
(rij)
ij ∈ Xi+1, set sij = −1.

If ∃� ≥ rij , dy
(	)
ij �∈ Xi+1, then define sij as the smallest integer such that,

abusing the notation, one has locally

y
(rij+sij)
ij = y

(rij+sij)
ij (y(λ), y

(σ)
ij , u, . . . , u(sij))

where 0 < λ < r, 0 < σ < rij + sij .
• If sij ≥ 0 and ∂2y

(rij+sij)
ij /∂u(sij)

2 �= 0 for some j = 1, . . . , 2i−1, stop!

• If Xi+1 + U = Y + U and ∂2y
(rij+sij)
ij /∂u(sij)

2
= 0, whenever sij ≥ 0,

then the algorithm stops and the realization is completed. Otherwise, define
the new auxiliary outputs, whenever d(∂y

(rij+sij)
ij /∂u(sij)) �= 0, respectively,

d(y(rij)
ij − ∂y

(rij+sij)
ij

∂u(sij) u) �= 0:

yi+1,2j−1 =
∂y

(rij+sij)
ij

∂u(sij)
, yi+1,2j = y

(rij)
ij − ∂y

(rij+sij)
ij

∂u(sij)
u

End of the algorithm.

Algorithm 2.21 yields the definition of the state (x1, . . . , xk) = (y(λ), y
(σ)
ij )

where 0 < λ < r, 0 < σ < rij + sij . General necessary and sufficient condi-
tions for the existence of an affine state representation are derived from the
algorithm as well.

Theorem 2.22. System (2.14) admits an affine realization if and only if Al-
gorithm 2.21 can be completed, or equivalently,

• k > s and
∂2y(k)

∂(u(s))2
= 0 (2.28)

• for sij ≥ 0 and any rij > 0, i = 1, 2, . . . , N , j = 1, . . . , 2i,

∂2y
(rij+sij)
ij

∂(u(sij))2
= 0 (2.29)

where yij, rij , and sij are as defined in Algorithm 2.21,
• there exists a finite integer N ≥ 1 such that

N∑
i=1

Xi + U = Y + U (2.30)
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Remark 2.23. Condition (2.29) is mentioned in [28, 158]. It embodies the fact
that the input-output equation (2.14) as well as the differential equations
relating the auxiliary outputs are affine in the highest time derivative of the
input.

Proof (Proof of Theorem 2.22).
Sufficiency: Algorithm 2.21 can be performed if conditions (2.28) and (2.29)
are satisfied. State variables are defined in the procedure of the algorithm. This
algorithm will be completed in finite steps according to condition (2.30). Con-
sequently, an affine, observable generating system is obtained for the input-
output system (2.14).
Necessity: To prove the necessity condition we need a lemma, which is partly
contained in [28, 29, 158].

Lemma 2.24. If there exists a state-space system{
ẋ = f(x) + g(x)u
y = h(x) (2.31)

which is a generating system for (2.14), locally around any point (y0, ..., u
(s)
0 )

in some suitable open dense subset of IRk+s+1, then ∂2y(k)/∂u(s)2 = 0,
dy11 ∈ spanK{dx}, and dy12 ∈ spanK{dx}.

Proof. It is already known that ∂2y(k)/∂u(s)2 = 0 is a necessary condition for
the existence of an affine realization of a given input-output system [28, 29,
158].

The rest of the statement follows from the equality

y(k−s) = Lk−s
f h + [LgL

k−s−1
f h]u

= y12 + y11u

If there exists an affine realization, then it can be transformed into the canon-
ical structure displayed by Algorithm 2.21. By Lemma 2.24, (2.28) holds.
Condition (2.29) follows from the proof of Lemma 2.24 which is applied to
each auxiliary output yij , considering all state variables in Xi−1 as param-
eters. The realization is observable and the dimension of the state-space is
finite, which imply (2.30).

2.8.2 Examples

Example 2.25.

Given the input-output differential equation

ÿ = u2 sin y cos y + u̇ sin y (2.32)
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for which k = 2 and s = 1, define

x1 = y(k−s−1) = y

Let
y11 = sin y, y12 = ẏ − u sin y

Then k21 = 0, k22 = 1. The relation

ẏ12 = −y12u cos y

implies that s22 = 0. Define

x2 = y
(k22−s22−1)
12 = y12

Then a realization of (2.32) is obtained:⎧⎨
⎩

ẋ1 = x2 + (sin x1)u
ẋ2 = −x2(cos x1)u
y = x1

(2.33)

which is both observable and accessible and therefore it is minimal.

Example 2.26.

Consider the input-output system:

uÿ − uẏ(u2 − ẏ2)1/2 − ẏu̇ = 0 (2.34)

and write it as
ÿ = ẏ(u2 − ẏ2)1/2 +

ẏ

u
u̇ (2.35)

The right-hand side of (2.35) is meromorphic on the open and dense subset
of IR3, containing the points (ẏ, u, u̇) such that u2 > ẏ2. Use Algorithm 2.21
to define

x1 = y(k−s−1) = y

and define the auxiliary outputs:

y11 =
ẏ

u
, y12 = ẏ − ẏ

u
u = 0

Then,
ẏ11 = y11(1 − y2

11)
1/2u

Define
x2 = y11

A realization is obtained which has the representation:⎧⎨
⎩

ẋ1 = x2u
ẋ2 = x2(1 − x2

2)
1/2u

y = x1

(2.36)

It does not satisfy the strong accessibility rank condition, so it is not a minimal
realization.
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Example 2.27. [27]

The input-output system

y2y(3)u2 − y3u4 − (3ẏ/y + 2u̇/u)ÿy2u2 + 2ẏ3u2

+2ẏu̇2y2 + 2ẏ2u̇yu − ẏüy2u = 0
(2.37)

can be written as

y(3) = yu2 + (3ẏ/y + 2u̇/u)ÿ − 2ẏ3/y2 − 2ẏu̇2/u2

−2ẏ2u̇/(yu) + ẏü/u
(2.38)

and has been considered before (see Example 2 of [27]). From Step 1 of Algo-
rithm 2.21, k = 3, s = 2. Let x1 = y and define y11 = ẏ/u. Then in Step 2 of
the algorithm,

ÿ11 = yu + 3y11ẏ11u/y − 2y3
11u

2/y2 + y2
11u̇/y.

So, k11 = 2 and s11 = 1. Let x2 = y11 and define

y22 = ẏ11 − y2
11u/y

Then
ẏ22 = (y + y11y22/y)u

Thus x1 = y, x2 = y11, and x3 = y22 yield⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2u
ẋ2 = x3 + (x2

2/x1)u
ẋ3 = (x1 + x2x3/x1)u
y = x1

(2.39)

Realization (2.39) is different from the realization given in [27] which is not
required to fit within the canonical scheme of Algorithm 2.21.

2.9 The Hopping Robot

Consider a hopping robot consisting of a body and a single leg, as sketched
in Figure 2.1 . The orientation of the body with respect to the leg is actuated
through torque u1. The length of the leg may vary with the translation of a
piston and it is controlled through a force u2. Although the realization theory
was developed for single input systems, it can easily be used to consider this
two-input system. It is modeled as follows. Let m be the mass of the leg, J the
inertia momentum of the body, r the (variable) length of the leg, θ denotes
the angular position of the body, and φ the angular position of the leg.

If the action of gravity is neglected, then the mechanical equations yield
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Fig. 2.1. Hopping robot

mr̈ − mrφ̇2 = u2

Jθ̈ = u1

mr2φ̈ + 2mrṙφ̇ = −u1

(2.40)

Equations (2.40) are higher order input/ouput equations, considering the
three outputs (r, θ, φ). Construct the extended system Σe defined in (2.15).

d
dt

⎛
⎜⎜⎜⎜⎜⎜⎝

r
ṙ
θ

θ̇
φ

φ̇

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ṙ

rφ̇2

θ̇
0
φ̇

−2 ṙφ̇
r

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
0 1/m
0 0

1/J 0
0 0

− 1
mr2 0

⎞
⎟⎟⎟⎟⎟⎟⎠
(

u1

u2

)
(2.41)

The latter is not accessible and H∞ is spanned by (2mrφ̇dr + mr2dφ̇ + Jdθ̇).
this one-form is exact and equals d(mr2φ̇+Jθ̇). This is the kinetic momentum
of the hopping robot and is constant. Its minimal realization has not dimension
6. A reduced input-output representation is obtained by

mr̈ − mrφ̇2 = u2

mr2φ̇ + Jθ̇ = 0
mr2φ̈ + 2mrṙφ̇ = −u1

(2.42)

Apply the procedure again, compute the new extended system Σe, whose
dimension is 5 now, and check H∞ = ′. A minimal realization of the hopping
robot (without gravity) thus has dimension 5. Suitable state variables may be
chosen as (r, ṙ, θ, φ, φ̇).
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2.10 Some Models

2.10.1 Electromechanical Systems

Consider an inverted pendulum of length l with a point mass m attached at
the end of the beam, which is actuated by the torque u applied at the base of
the beam. Let g denote the gravitational constant, and ϕ the angular position
of the pendulum with respect to the vertical position. Then the equation of
motion is

ml2ϕ̈ − mgl sin ϕ = u.

The angle ϕ is the output. Rewriting it into the form (2.14),

ϕ̈ =
1

ml2
[u + mgl sin ϕ].

Algorithm 2.21 can be applied that yields the obvious state variables x1 = ϕ
and x2 = ϕ̇. The state realization is then

ẋ1 = x2

ẋ2 = 1
ml2 [u + mgl sin x1]

ϕ = x1

2.10.2 Virus Dynamics

Several models of virus dynamics can be found in [129]. Let us consider here
the HIV infection and the elementary modeling of the immune system when it
is subject to HIV infection. The immune system is based on two main actors,
the so-called CD8 cells and the CD4 cells. The CD4 cells act as markers, they
mark and identify the undesirable agents as viruses, bacteria, etc. The CD8
cells act as killers. However the CD8 cells kill only agents that have been
marked beforehand by some CD4 cell. The body is subject to many infectious
agents, and the majority of those infections have no consequence at all. Some
of them are agressive against specific tissues of the body and the immune
system is able to eliminate the infection. What is unfortunate about HIV is
that this virus attacks the basis of the immune system itself. The HIV virus
infects CD4 cells which will no longer be able to mark the HIV virions. After
the population of healthy CD4 cells decreases, the HIV virions will thus be
protected against the immune system. Infected CD4 cells act as host cells and
they produce new HIV virions. An elementary model may be derived. Let T
denote the population of healthy CD4 cells. Let T ∗ denote the population of
infected CD4 cells. Let v denote the population of HIV virions. As any living
specie, the CD4 cells have some finite lifetime 1/δ. The evolution of some
independent population is then approximated by the linear first-order system:

Ṫ = −δT
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The body is assumed to produce new CD4 cells at some constant rate s; thus,
the evolution of T in a noninfected body will be described by

Ṫ = s − δT

and the population T stabilizes at some equilibrium T0 = s/δ. In an infected
body, besides natural death, the population T decreases due to the agression
of the virus. Part of the healthy CD4 cells will be converted into infected CD4
cells. It is supposed to be proportional to both the T population and the v
population. Finally, the dynamics of T is

Ṫ = s − δT − βTv

The population T ∗ of infected CD4 cells is also submitted to a natural death,
with a lifetime 1/μ. The only source of production of new infected CD4 cells
has already been described and its rate equals βTv. Thus, the dynamics of
T ∗ reads as

Ṫ ∗ = βTv − μT ∗

The population v of HIV virions is submitted to a natural death and their
lifetime equals 1/c. The production of new virions is proportional to the pop-
ulation T ∗ of infected CD4 cells. Let us exclude here the case of new external
injection of some virus load. Then the dynamics of v becomes

v̇ = kT ∗ − cv

Problems

2.1. Consider the following ”Ball and Beam” system [166], whose input is the
angle α and whose output is the ball position r. The input-output equation
of the system is

0 =
(

J

R2
+ m

)
r̈ + mg sin α − mrα̇2

where the constant parameters J, R, m, g represent, respectively, the inertia
of the ball, its radius, its mass, and the gravitational constant.

1. Write a generalized state space representation of the system, if any.
2. Write a classical state-space realization, if any. Hint: Apply Theorem 2.16.
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Fig. 2.2. Ball and Beam

2.2. Consider the same ”ball and beam” system as in Exercise 2.1 and assume
that the angle α is produced by a torque u, so that

α̈ = u

Considering u as the input and r as the output, write a classical state-space
realization.

2.3. Consider the following ”Pendulum on a cart” system. Let m and l be the

M

g

l

F

r

 m

Fig. 2.3. Pendulum on a cart

mass and the length of the pendulum, let M be the mass of the cart. The
external force F applied to the cart is the control variable. This system can
be modeled as

(M + m)r̈ + bṙ + mlθ̈ cos θ − mlθ̇2 sin θ = F

(I + ml2)θ̈ + mgl sin θ = −mlr̈ cos θ

Considering the output y = θ, write a classical state-space realization, if any.
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Accessibility

3.1 Introduction

A basic notion in control systems theory is that of reachable state and control-
lability. Controllability concerns the possibility of steering the system from a
state x1 to another state x2. For linear systems, controllability is a structural
property, in the sense that any linear system can be split into a controllable
subsystem and an autonomous one.

This is not the case for nonlinear systems, as the examples in Section
3.2 show. The structural property that in the nonlinear case plays a role
similar to that of controllability in the linear case and can be given a similar
characterization is the accessibility property.

To illustrate the notions of reachability, controllability, and accessibility,
we will consider, in this chapter, a system without outputs of the form

ẋ = f(x) + g(x)u (3.1)

where x ∈ IRn, u ∈ IRm, and the entries of f(x) and g(x) are elements of K.

3.2 Examples

The following examples illustrate some classical pathologies stemming from
the fact that, in general, one cannot expect a nonlinear system to be control-
lable from any initial state to any final state.

Example 3.1. Consider the following one-dimensional system

ẋ = xu (3.2)

This system is clearly not controllable from zero: if the initial state is
located at the origin, then the trajectory x(0, u(t)) of (3.2) remains at the
origin for any input function u(t).
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From an initial state x0 different from the origin, it is not possible to reach
a state x1 such that x1x0 < 0 since, for any continuous function u(t), the
trajectory should pass through the origin and remain there. However, any
point x1 such that x1x0 > 0 is reachable from x0 �= 0.

Example 3.2.
ẋ1 = x2

2

ẋ2 = u
(3.3)

This system is not controllable from any initial point x0, in the sense that
any neighborhood of x0 contains a point x1 which cannot be reached from x0.
Figure 3.1 below shows the set of points which are reachable from x0.

�

�






















































































































�x0

x2

x10

set of reachable points
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Fig. 3.1. Reachable set of system (3.3)

3.3 Reachability, Controllability, and Accessibility

The following definitions formalize the phenomena displayed by the introduc-
tory examples.

Definition 3.3. For a nonlinear system Σ of the form (3.1), the state x1 is
said to be reachable from the state x0 if there exists a finite time T and a
Lebesgue measurable function u(t) : [0, T ] → IRm, such that x(x0, u, T ) = x1.

For the system (3.2), the state x1 = 2 is reachable from x0 = 1, whereas
x2 = −1 is not.

Definition 3.4. A system Σ of the form (3.1) is said to be controllable at x0

if there exists a neighborhood V of x0, such that any state x1 in V is reachable
from x0.
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The system (3.2) is controllable at any state different from the origin,
whereas there does not exist any state x0 in IR2 at which the system (3.3) is
controllable.

Definition 3.5. A system Σ of the form (3.1) is said to be accessible at x0 if
the set of reachable points from x0 contains an open subset of IRn.

As illustrated in Figure 3.1, the system (3.3) is accessible in this sense at any
point of IR2.

From [154], the accessibility of a nonlinear analytic system at a given point
x0 of the state space IRn is characterized by the fact that the so-called strong
accessibility distribution L has dimension n at that point. The existence of an
open and dense submanifold of the state space IRn at whose points the system
is accessible is then characterized by the fact that the strong accessibility
distribution L has generically dimension n .

From an algebraic point of view, accessibility will be characterized in the
next Section using the concepts of autonomous element introduced in [136].

3.4 Autonomous Elements

Let X denote the subspace of E given by X = spanK{dxi, i = 1, . . . , n} .

Definition 3.6. A nonzero function ϕ in KΣ is said to be an autonomous
element of a system Σ of the form (3.1) if there exists an integer ν and a
nonzero meromorphic function F so that

F (ϕ, ϕ̇, ..., ϕ(ν)) = 0 (3.4)

where ϕ̇ = δϕ.

Definition 3.7. Let ϕ be a function in KΣ such that dϕ ∈ X . The relative
degree r of ϕ is given by

r = inf{k ∈ IN, such that dϕ(k) �∈ X}. (3.5)

In particular, we say that ϕ has finite relative degree if r belongs to IN and
that ϕ has infinite relative degree if r = ∞.

Remark 3.8. Note that if ϕ has relative degree equal to k, then

spanK{dϕ, ..., dϕ(k−1)} ⊂ X
spanK{dϕ, ..., dϕ(k)} �⊂ X

Proposition 3.9. If a function ϕ in KΣ is an autonomous element for a
system Σ of the form (3.1), then

(i) dϕ ∈ X
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(ii)ϕ has infinite relative degree.

Proof. Any vector ω ∈ E and which does not belong to X satisfies

dim spanK{ω, ..., ω(k−1)} = k (3.6)

for any k ≥ 1. From Definition 3.6, this is not true for ω = dϕ and k = ν + 1.
This ends the proof of statement (i).
If ϕ has a finite relative degree, then

dim spanK{dϕ, ..., dϕ(k−1)} = k (3.7)

for any k ≥ 1. This contradicts Definition 3.6.

The notion of autonomous element can be defined also in the context of non-
exact forms.

Definition 3.10. A one-form ω in X is said to be an autonomous element
of a system Σ of the form (3.1) if there exists an integer ν and meromorphic
function coefficients αi in K, for i = 1, . . . , ν, so that

α0ω + . . . + ανω(ν) = 0 (3.8)

Definition 3.11. The relative degree r of a one-form ω in X is given by

r = min{k ∈ IN, | spanK{ω, ..., ω(k)} �⊂ X} (3.9)

Proposition 3.12. A one form ω in X is an autonomous element if and only
if it has an infinite relative degree.

Proof. Necessity: Assume that ω in X has an infinite relative degree. Since
dimX = n, there exists k, 0 ≤ k ≤ n such that

dim spanK{ω, ..., ω(k)} = k (3.10)

This yields that ω is autonomous.
Sufficiency: By contradiction, show that if ω has finite relative degree, then
it is not autonomous. As a matter of fact, if ω has finite relative degree, then

dim spanK{ω, ..., ω(k−1)} = k (3.11)

for any k ≥ 1. This completes the proof.

It is now straightforward to prove

Proposition 3.13. The function ϕ ∈ K and the one-form dϕ have the same
relative degree.

As a consequence, ϕ is autonomous if and only if dϕ is autonomous.

Proposition 3.14. The set A of autonomous elements of E is a subspace of
E.

Proof. Using Proposition 3.12, the proof becomes straightforward. Consider
two vectors in A; their sum still has an infinite relative degree. The same holds
for the product of an element in A and a scalar function in KΣ .
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3.5 Accessible Systems

Now, let us state formally the following definition:

Definition 3.15. The system (3.1) is said to satisfy the strong accessibility
condition if

A = 0 (3.12)

or, equivalently, there does not exist any nonzero autonomous element in K.

A practical criterion for evaluating accessibility is given as follows.
Accessibility Criterion: Computation of A

Let us define a filtration of E , i.e., a sequence of subspaces {Hk} of E such
that each Hk, for k > 0, is the set of all one-forms with relative degree at
least k.

The sequence is defined by induction as follows:

H0 = spanK{dx, du},
Hj = {ω ∈ Hj−1 | ω̇ ∈ Hj−1}.

It is clear that this sequence is decreasing, i.e., E ⊃ H0 ⊃ H1 ⊃ H2 ⊃ · · · ,
and that, at the first step,

H1 = spanK{dx}

An easy consequence of the construction is the following.

Proposition 3.16. Hk is the space of one-forms whose relative degrees are
greater than or equal to k. Furthermore, there exists an integer k∗ > 0 such
that:

Hk ⊃ Hk+1 for k ≤ k∗,

Hk∗+1 = Hk∗+2 = · · · = H∞

Hk∗ ⊇/ H∞

By definition, it follows that A = H∞. The existence of the integer k∗

comes from the fact that each Hk is a finite-dimensional K-vector space so
that, at each step either the dimension decreases by at least one or Hk+1 = Hk.

Systems that satisfy the strong accessibility condition get an easy algebraic
characterization now [3].

Theorem 3.17. The system (3.1) satisfies the strong accessibility condition
if and only if

H∞ = 0 (3.13)
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The condition (3.13) is locally equivalent to the fact that the strong ac-
cessibility distribution L spans the whole tangent bundle TM to the state
manifold M , where the strong accessibility distribution L is defined as the
limit of a filtration

0 ⊂ Δ1 ⊂ ... ⊂ Δk ⊂ ... ⊂ TM

of involutive distributions Δk given by

Δk = g + adfg + ... + adk
fg

The remarkable fact is that the condition given by Theorem 3.17 does not
require us to work with exact forms only. The practical construction of Hk is
easier than that of Δk, since a low number of purely algebraic computations
is required and no involutivity condition need to be considered.

3.6 Controllability Canonical Form

Although Hk is in general not closed, i.e., it does not admit a basis which
consists only of closed forms, the limit A = H∞ turns out to be closed. This
follows from the fact that locally

A⊥L
and it is stated in the following Proposition ([86]):

Proposition 3.18. Let {ω1, ..., ωr} be a basis for A, then

dωi ∧ ω1 ∧ . . . ∧ ωm = 0, 1 ≤ i ≤ r (3.14)

From the Frobenius Theorem, there exist locally r functions, say ξ1, ..., ξr ,
with infinite relative degree so that

A = spanK{dξ1, ...,dξr}
Since A is invariant under time differentiation, in particular,

ξ̇1 = f1(ξ1, · · · , ξr)
...

ξ̇r = fr(ξ1, · · · , ξr)

(3.15)

Now, choosing n − r arbitrary functions, say ξr+1, · · · , ξn, so that

X = spanK{dξ1, ...,dξn}
where X denotes spanK{dx}, one derives a representation, called the control-
lability canonical form, of system (3.1) of the form
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ξ̇1 = f1(ξ1, · · · , ξr)
...

ξ̇r = fr(ξ1, · · · , ξr)
ξ̇r+1 = fr+1(ξ1, · · · , ξn) + gr+1(ξ1, · · · , ξn)u

...
ξ̇n = fn(ξ1, · · · , ξn) + gn(ξ1, · · · , ξn)u

(3.16)

Note that, as a consequence of the state elimination results in Section 2.1,
the ξ1, . . . , ξr are autonomous elements that satisfy a differential equation of
order less than or equal to r.

3.7 Controllability Indices

Define, now,
hi = dimHi − dimHi+1, for i ≥ 1

Moreover, hk∗ is nonzero and hk = 0, for any k > k∗.
The set of controllability indices {k∗

1 , . . . , k∗
m} of system (3.1) is defined as

the dual set of {h0, . . . , hk∗} by the relations

hi = card{k∗
j |k∗

j ≥ i}
k∗

j = card{hi|hi ≥ j} for j = 1, . . . , m

In particular, k∗ = max{k∗
1 , . . . , k∗

m}
Proposition 3.19. For system (3.1),

k∗
1 + . . . + k∗

m = n − dimA (3.17)

Note that in the nonlinear setting, the controllability indices describe only
the structure of the accessible subsystem. It is not possible in general to display
them as in the linear case by a Brunovsky canonical form.

Example 3.20. Consider the unicycle described in Figure 3.2 below whose state
representation is

ẋ =

⎡
⎣ cosx3 u1

sinx3 u1

u2

⎤
⎦ .

Compute
H1 = spanK{dx}
H2 = spanK{(sinx3)dx1 − (cos x3)dx2}
H3 = 0

The controllability indices are computed as follows. h1 = 2, h2 = 1, h3 = 0, . . .
and k∗

1 = 2, k∗
2 = 1. However, there does not exist any change of coordinates

that gives rise to a representation containing a Brunovsky block of dimension
2. The system is accessible; there does not exist any autonomous element.
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Fig. 3.2. The unicycle

Example 3.21. Consider⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ẋ1

ẋ2

ẋ4

...
ẋn−1

ẋn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0
x3 0
x4 0
...

...
xn 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(

u1

u2

)
(3.18)

Then, compute

H2 = spanK{x3dx1 − dx2, . . . , xndx1 − dxn−1}
and more generally, for 2 ≤ k ≤ n − 1,

Hk = spanK{x3dx1 − dx2, . . . , xn−k+2dx1 − dxn−k+1}
Hn−1 = spanK{x3dx1 − dx2}

Hn = H∞ = 0

Thus, h1 = 2, h2 = 1, h3 = 1, . . ., hn1 = 1, hn = 0 and k∗
1 = n − 1, k∗

2 = 1
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3.8 Accessibility of the Hopping Robot Model

Consider again the hopping robot of Section 2.9.
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Fig. 3.3. Hopping robot

Choosing the state variables as (x1, ..., x6) = (l, l̇, θ, θ̇, ψ, ψ̇), the resulting
state equations are

ẋ =

⎛
⎜⎜⎜⎜⎜⎜⎝

x2

x1x
2
6

x4

0
x6

−2x2x6
x1

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
0 1/m
0 0

1/J 0
0 0

− 1
mx2

1
0

⎞
⎟⎟⎟⎟⎟⎟⎠
(

u1

u2

)
(3.19)

The system (3.19) is not accessible, because, as remarked previously, H∞ is
spanned by (2mx1x6dx1 +mx2

1dx6 +Jdx4). The kinetic momentum mx2
1x6 +

Jx4 of the hopping robot is constant and it represents a noncontrollable com-
ponent of the state.

Problems

3.1. Consider the realization of the ball and beam system obtained from Ex-
ercise 2.2 and check its accessibility.

3.2. Compute the controllability indices of the hopping robot (3.19).
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3.3. Consider the linear system ẋ = Ax + Bu. Compute the spaces Hk, for
k ≥ 1, in terms of the matrices A and B and derive the standard controllability
criterion for linear systems.
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Observability

4.1 Introduction

The notion of the observability of a linear or nonlinear dynamic system con-
cerns the possibility of recovering the state x(t) from knowledge of the mea-
sured output y(t), the input u(t), and, possibly, a finite number of their time
derivatives y(k)(t), k ≥ 0, and u(l)(t), l ≥ 0. The structural property which
can be easily characterized in a nonlinear framework concerns the existence
of an open and dense submanifold of the state space IRn around whose points
the system is locally observable. Thus, the situation is quite similar to the one
pertaining to controllability.

To illustrate the notions of observability we will consider systems of the
form (1.4), that is, {

ẋ = f(x) + g(x)u
y = h(x)

where x ∈ IRn, u ∈ IRm, y ∈ IRp, and the entries of f , g and h are meromorphic
functions of x. We will sometimes ignore the presence of inputs in the system.

4.2 Examples

Example 4.1. Let us consider the system Σ defined by{
ẋ = 0
y = x2 (4.1)

Clearly, for this system, it is not possible to distinguish between positive and
negative values of the state just from knowledge of the output. We will say, in
a situation like this, that Σ is not observable in a neighborhood of the origin.
If one has the additional information that the state x belongs to an open
neighborhood of some point x0 which does not contain the origin, then its
value can be deduced from the value of the output y by
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x = sgn(x0)
√

y

where sgn(.) denotes the sign function. We will say, then, that Σ (4.1) is
locally observable around any point different from the origin.

Example 4.2. Let q be an integer, q ≥ 1, and let us consider the system Σ
defined by {

ẋ = x2q

y = x2 (4.2)

As in Example (4.1), the knowledge of y at time t is not sufficient to deduce
the value of x at time t. However, ẏ = 2x2q+1 and so,

x =

{
0, if y = 0
ẏ

2yq , if y �= 0

In this case, we will say that Σ is observable.

Further discussions and examples about the notion of observability for non-
linear systems may be found in [45, 73, 131, 163, 164].

4.3 Observability

In terms of the possibility of recovering the state, the notion that gets a nice
structural characterization in the nonlinear context is the so-called local weak
observability. Such a notion is defined using the concept of (in-)distinguishable
states [73].

Definition 4.3. Given a system Σ of the form (1.4), two states x1 and x2 in
X are said to be indistinguishable if, for any admissible input function u(t)
and any initial time t0, the outputs y1(t) and y2(t) corresponding to u(t) and
to the initial condition x(t0) = x1 or, respectively, x(t0) = x2 are equal for
any t ≥ t0.

Example 4.4. Consider the unicycle in Example 3.20:

ẋ =

⎡
⎣ cosx3 u1

sin x3 u1

u2

⎤
⎦

with output y = x1. Let x1 = (0, 0, 0) and x2 = (0, z, 0). The states x1 and
x2 are indistinguishable for any z ∈ IR since

y1(t0, x1, u(t)) = y2(t0, x2, u(t)) =
∫ t

t0

cos
(∫ τ

t0

u2(σ)dσ

)
u1(τ)dτ
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The above definition is scarcely useful for practical purposes, since it is based
on a condition difficult to check. It can, however, be strengthened and made
easier to handle by imposing that the considered input functions keep the
state trajectory inside a given subset of the state space. One gets, in this way,
the following definition:

Definition 4.5. Given a system Σ of the form (1.4), let V be a subset of
the state space X. Two states x1 ∈ V and x2 ∈ V are said to be V -
indistinguishable if, for any admissible input function u(t), for which the cor-
responding state trajectories originating from x1 or from x2 remain in V , the
corresponding outputs y1(t) and y2(t) are equal for any t ≥ t0

The above definition of V -indistinguishability does not induce an equivalence
relation on the state space X (as the notion of indistinguishability actually
does) since it is obviously not transitive. Let us denote, however, by IV (x0)
the set of states which are indistinguishable from x0. Then, we can state the
definition.

Definition 4.6. Given a system Σ of the form (1.4), a state x0 ∈ X is locally
weakly observable if there exists an open region M ⊆ X containing x0, such
that, for any open neighborhood V of x0 contained in M , IV (x0) = {x0}
Definition 4.7. A system Σ of the form (1.4) is said to be locally weakly
observable if there exists an open dense subset M of its state space X, such
that any x0 ∈ M is locally weakly observable.

In the rest of this book, local weak observability will simply be termed ob-
servability. From a practical point of view, this property expresses the fact
that the state x can be recovered as a function of the output y, the input u,
and a finite number of their time derivatives.

4.4 The Observable Space

Given a system Σ of the form (1.4), let us denote by X , U , and Y the spaces
defined, respectively, by X = spanK{dx}, U = spanK{du(j), j ≥ 0}, and
Y = ∪i≥0Yi, where Yi = spanK{dy(j), 0 ≤ j ≤ i}. The chain of subspaces

0 ⊂ O0 ⊂ O1 ⊂ O2 ⊂ . . . ⊂ Ok ⊂ . . . (4.3)

where Ok := X ∩ (Yk + U) is called the observability filtration.
In the special case of linear systems, Ok reads as

Ok = spanK{Cdx, CAdx, . . . , CAkdx}

If we denote by O∞ the limit of the observability filtration, it is easy to see
that

O∞ = X ∩ (Y + U)

and we can state the following definition.
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Definition 4.8. The subspace O∞ ⊆ E is called the observable space of the
system Σ.

The following theorem (whose proof is left for an exercise) describes the first
basic property of the subspace O∞

Theorem 4.9. The observable subspace O∞ of Σ is such that

dim O∞ = rankK

[
∂(y, ẏ, . . . , y(n−1))

∂x

]
(4.4)

4.4.1 An Observability Criterion

The general result characterizing the observability of a system Σ of the form
(1.4) follows from [73].

Theorem 4.10. A system Σ of the form (1.4) is observable if and only if

O∞ = X (4.5)

As a consequence of Theorems 4.9 and 4.10, we obtain the following observ-
ability rank condition.

Corollary 4.11. A system Σ of the form (1.4) is observable if and only if

rankK

[
∂(y, ẏ, . . . , y(n−1))

∂x

]
= n

The above rank condition reduces to the standard Kalman criterion for ob-
servability in the special case of linear systems.

Example 4.12. Consider the system Σ defined by⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2 + x3u
ẋ2 = x1

ẋ3 = x2

y = x1

for which ẏ = x2 + x3u and y(2) = x1 + x3u̇ + x2u. Computation shows that

O0 = X ∩ (Y0 + U) = spanK{dx1}
O1 = X ∩ (Y1 + U) = spanK{dx1, dx2 + udx3}
O2 = X ∩ (Y2 + U) = X

Then, the system is observable, since O∞ = O2 = X . Alternatively,

rankK

[
∂(y, ẏ, y(2))

∂x

]
=

⎡
⎣ 1 0 0

0 1 u
1 u u̇

⎤
⎦ = 3

which yields the same results.
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A further basic property of O∞, as a space of differential forms, is integrability.
This is shown, without loss of generality, in the case p = m = 1 in the next
theorem.

Theorem 4.13. The observability space O∞ of a system Σ of the form (1.4)
is closed.

Proof. Without loss of generality, assume that p = m = 1. Compute the
successive time derivatives of the output y as follows.

y = h(x) = a0
0(x) (4.6)

ẏ is a polynomial in u:
ẏ = a1

0(x) + a1
1(x)u (4.7)

ÿ is a polynomial in u, u̇:

ÿ =
∑

ij ≤ 2
1 ≤ i ≤ 2

j ≤ 2

a2
ij(x)u(i−1)j

(4.8)

More generally, y(s) is a polynomial in u(i1−1)j1 · · ·u(ik−1)jk , for i1j1 + · · · +
ikjk ≤ s, 1 ≤ i ≤ s, j ≤ s:

y(s) =
∑

i1j1 + · · · + ikjk ≤ s
1 ≤ i ≤ s

j ≤ s

as
i1j1...ikjk

(x)u(i1−1j
1) · · ·u(ik−1j

k
) (4.9)

and finally, compute y(n−1) as a polynomial in u(i1−1)j1 · · ·u(ik−1)jk , for i1j1+
· · · + ikjk ≤ n − 1, 1 ≤ i ≤ n − 1, j ≤ n − 1:

y(n−1) =
∑

i1j1 + · · · + ikjk ≤ s
1 ≤ i ≤ n − 1

j ≤ n − 1

an−1
i1j1...ikjk

(x)u(i1−1j
1) · · ·u(ik−1j

k
) (4.10)

There are at most n independent coefficients a	
i···j since

rank
∂(a0

0(x), . . . , a	
i···j(x), · · ·)

∂x
≤ n

Denote c1(x), . . . , cν(x) those independent coefficients. Then, for any index,
a	

i···j may be expressed as a function ϕ	
i···j of c1(x), . . . , cν(x). Substitute those

expressions in (4.6), (4.7), and (4.10). The resulting systems can then be solved
in c1(x), . . . , cν(x):
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ci(x) = Ci(y, ẏ, . . . , y(n−1), u, . . . , u(n−2))

Finally,
O∞ = span{dc1(x), . . . ,dcν(x)}

Example 4.14. Consider the system Σ defined by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = x2x4 + x3u
ẋ2 = x2

ẋ3 = 0
ẋ4 = 0
y = x1

for which ẏ = x2x4 + x3u, y(2) = x2x4 + x3u̇, y(3) = x2x4 + x3u
(2) and, more

generally, y(k) = x2x4 + x3u
(k).

Computation shows that

O0 = spanK{dx1}
O1 = spanK{dx1, d(x2x4) + udx3}
O2 = spanK{dx1, d(x2x4) + udx3, d(x2x4) + u̇dx3}

= spanK{dx1, d(x2x4), dx3}
O3 = spanK{dx1, d(x2x4) + udx3, d(x2x4) + u̇dx3, d(x2x4) + u2dx3}

= spanK{dx1, d(x2x4), dx3}
...

Ok = spanK{dx1, d(x2x4) + udx3, d(x2x4) + u̇dx3, . . . ,d(x2x4) + ukdx3}
= spanK{dx1, d(x2x4), dx3}

Then, the system is not observable, since O∞ = O2 �= X . However, letting
a0
0(x) = x1, a1

0(x) = x2x4, a1
1(x) = x3, a2

0(x) = x2x4, . . .

rank

[
∂(a0

0(x), . . . , a	
i···j(x), · · ·)

∂x

]
= rank

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 x4 0 x2

0 0 1 0
0 x4 0 x2

0 0 1 0
. . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦

= 3

Choosing, for instance, c1(x) = x1 = y, c2(x) = x2x4 = ẏ − ẏ − y(2)

u − u̇
, c3(x) =

x3 =
ẏ − y(2)

u − u̇
, we can also write O∞ = span{dc1(x), dc2(x), dc3(x)}.

4.5 Observability Canonical Form

Given the system Σ of the form (1.4), its observable space O∞ has the invari-
ance property described in the next proposition.
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Proposition 4.15. Given a system Σ of the form (1.4), ˙O∞ ⊆ O∞ + U .

Proof. Assume that O∞ = X ∩(Yk +U) and, hence, O∞ = X ∩(Yk+1 +U) for
all k ≥ 0 . Then, w ∈ O∞ implies w ∈ X and w ∈ (Yk +U). So, ẇ ∈ (X + U)
and ẇ ∈ (Yk+1 + U) or, in other terms ẇ = wX + wU = wY + w′

U , with
wX ∈ X , wU ∈ U , w′

U ∈ U , wY ∈ Yk+1. The above equality implies that wX
also belongs to (Yk+1 + U), then it belongs to O∞, and, as a consequence,
ẇ = wX + wU belongs to O∞ + U .

Since O∞ is closed, it has a basis of the form {dz1, . . . ,dzr}. Completing the
set {z1, . . . , zr} to a basis {z1, . . . , zr, zr+1, . . . , zn} of IRn, it is easy to see,
thanks to the invariance property shown above, that the system Σ, in these
coordinates, reads as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = f1(z1, . . . , zr) + g1(z1, . . . , zr)u
...

żr = fr(z1, . . . , zr) + gr(z1, . . . , zr)u
żr+1 = fr+1(z) + gr+1(z)u

...
żn = fn(z) + gn(z)u
y = h(z1, . . . , zr)

(4.11)

We will call a representation of the form (4.11) a canonical form with respect
to observability.

4.6 Observability Indices

Given a system Σ of the form (1.4), its observability filtration 0 ⊂ O0 ⊂ O1 ⊂
O2 ⊂ . . . ⊂ Ok ⊂ . . . defines a set of structural indices in the following way.
Let the indices σi for i ≥ 1 be defined by

σ1 = dimO0

σi = dim Oi−1
Oi−2

for i ≥ 2. The set of indices s1, for i ≥ 1, which is dual to the set {σi, i ≥ 1},
is defined by

si = card{σj such that σj ≥ i} (4.12)

The integer σj represents the number of observability indices si which are
greater than or equal to j, and duality implies that σj = card{si such that si ≥
j}.
Definition 4.16. Given a system Σ of the form (1.4), the set of indices
{s1, . . . , sp} defined by (4.12) is called the set of observability indices of Σ.
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The key property of observability indices we are interested in is described in
the following proposition.

Proposition 4.17. Given a system Σ of the form (1.4), one has

s1 + . . . + sp = dimO∞ (4.13)

Example 4.18. Consider the unicycle described in Example 3.20, whose out-
puts are the coordinates (x1, x2):

y1 = x1

y2 = x2

One has O0 = spanK{dx1, dx2} and O1 = X . Thus, σ1 = 2, σ2 = 1 and
s1 = 2, s2 = 1.

In Chapter 6, we will construct a canonical form that displays the decompo-
sition of a system (1.4) into observable blocks, whose dimensions equal the
observability indices.

4.7 Synthesis of Observers

The use of an observer that evaluates the state from the knowledge of inputs
and outputs is in order whenever the state itself is not directly measurable,
but its value is required for computing a feedback or for monitoring the system
behavior. In contrast to the linear situation, observability of a given nonlinear
system is necessary but not sufficient to assure the possibility of constructing
an observer. In this section, we give some results on the synthesis of a non-
linear observer for a system of the form (1.4), which is based, on one hand,
on linearization via output injection and state-space transformation and, on
the other hand, on standard Luenberger observer design, performed on the
linearized system. The main property which is required for obtaining such an
observer is a sort of inherent linearity, which is characterized in the rest of this
section. If such a property is absent, it is possible to investigate alternative
design techniques, for instance, those giving rise to high gain observers [63] or
to sliding mode observers [146], which are not considered here.

4.7.1 Linearization by Input-output Injection and Observer
Design 1

Consider a system Σ of the form (1.4) and assume that it is a single output
(p = 1) and observable system. As a consequence, it has a single observability
index which equals n. Assume that it is possible to find a local state-space
coordinate transformation (ξ1, . . . , ξn) = φ(x) such that
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rank
∂φ

∂x
= n (4.14)

and functions ϕi(y, u), for i = 1, . . . , n, such that we can write⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ̇1 = ξ2 + ϕ1(y, u)
...

ξ̇n−1 = ξn + ϕn−1(y, u)
ξ̇n = ϕn(y, u)
y = ξ1

(4.15)

The terms ϕi in (4.15) define a sort of input-output injection, for which a
general definition will be given in Chapter 6. The search for the state-space
coordinate transformation (ξ1, . . . , ξn) = φ(x) and for the functions ϕi(y, u),
for i = 1, . . . , n, which together allow us to obtain the form (4.15), is called
the linearization problem by input/output injection. The solvability of this
latter will be investigated later on. For the moment, starting from (4.15), we
show how to construct an observer for Σ.
Note that system (4.15) has the form{

ξ̇ = Aξ + ϕ(y, u)
y = Cξ

where (C, A) is a pair of constant matrices in canonical observer form. An
estimate ξ̂ of the state ξ can then be obtained from the following system:

˙̂
ξ = Aξ̂ + ϕ(y, u) + K(Cξ̂ − y) (4.16)

where K is chosen so that the eigenvalues of the matrix A+KC are in the open
left half complex plane. Thus, the estimation error ξ̂ − ξ goes asymptotically
to zero. From assumption (4.14), locally x = φ−1(ξ1, . . . , ξn) and an estimate
x̂ for the state x of the original system Σ is given by

x̂ = φ−1(ξ̂1, . . . , ξ̂n)

Let us go back now to the problem of finding a state-space coordinate
transformation (ξ1, . . . , ξn) = φ(x, u) and functions ϕi(y, u), for i = 1, . . . , n,
which allow us to obtain the form (4.15). To find a solution of this problem, if
any exists, let us assume that, by applying the state elimination technique of
Section 2.1 to a system Σ of form (1.4) and by invoking the implicit function
theorem, we get locally an input-output relation of the form

y(n) = F (y, ẏ, . . . , y(n−1), u, u̇, . . . , u(γ)) (4.17)

Then, define a sequence of differential one-forms in the following way:

• set F0 = F and ϕ0 = 0;
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• for k = 1, . . . , n, define

Fk = Fk−1 − ϕ
(n−k+1)
k−1 (4.18)

ωk =
∂Fk

∂y(n−k)
dy +

m∑
j=1

∂Fk

∂u
(n−k)
j

duj (4.19)

If dωk �= 0, stop.
If dωk = 0, then let ϕk(y, u) be a solution of

∂ϕk

∂y
dy +

m∑
j=1

∂ϕk

∂uj
duj = ωk (4.20)

for 1 ≤ k ≤ n − 1 and
ϕn(y, u) = Fn (4.21)

At this point, a necessary and sufficient condition for the existence of a state
coordinate transformation φ which, together with the functions ϕi(y, u) con-
structed above in (4.21), allows us to put the system Σ into the form (4.15),
can be formulated as follows:

Theorem 4.19. Given a single output, observable system Σ of the form (1.4)
and letting the function ϕi(y, u) for i = 1, . . . , n be constructed as above in
(4.21), there exists locally a state coordinate transformation ξ = φ(x), satis-
fying (4.14), such that (4.15) holds if and only if

dωk = 0 (4.22)

for 1 ≤ k ≤ n, where the ωk’s are defined by (4.19).

Theorem 4.19 is a special case of Theorem 4.21 below which will be proved in
the sequel.

Example 4.20. Let us consider the model of a direct current motor (DC mo-
tor), described by the equations (see [18])

⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = −Km · x1 · x2 − Ra + Rf

K
· x1 + u

ẋ2 = −B

J
· x2 − x3 +

Km

J
· K · x2

1

ẋ3 = 0

(4.23)

where x1 denotes the magnetic flux and verifies x1 > 0; x2 denotes the rotor
speed; x3 denotes the constant load torque; Ra and Rf denote, respectively,
the stator and the inductor resistance; B is the viscous friction coefficient,
and Km is the constant motor torque. As output of the system, to simplify
the computations, we choose the natural logarithm of x1, y = ln(x1). Since

ẏ =
ẋ1

x1
, substituting ey for x1, we get
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ẏ = e−y(−Kmeyx2 − Ra + Rf

K
ey + u) = −Kmx2 − Ra + Rf

K
+ ue−y (4.24)

y(2) = −Km(−B

J
· x2 − x3 +

Km

J
· K · e2y) + u̇e−y − ue−yẏ (4.25)

y(3) =
KmB

J
ẋ2−2

K2
mK

J
·e2yẏ+u(2)e−y−2u̇e−yẏ+ue−yẏ2−ue−yy(2) (4.26)

From (4.25),

(−B

J
· x2 − x3 +

Km

J
· K · e2y) =

1
Km

(−y(2) + u̇e−y − ue−yẏ) (4.27)

and, by substituting in (4.26), we get the input/output differential equation

y(3) = F (y, ẏ, y(2), u, u̇, u(2)) =
B

J
(−y(2) + u̇e−y − ue−yẏ)+

−2
KmK

J
· e2yẏ + u(2)e−y − 2u̇e−yẏ + ue−yẏ2 − ue−yy(2)

(4.28)

Let F1 = F (y, ẏ, y(2), u, u̇, u(2)); then
∂F1

∂y(2)
= −B

J
− ue−y,

∂F1

∂u(2)
= e−y and,

by (4.19), ω1 = (−B

J
− ue−y)dy + e−ydu. Now, ω1 is an exact one-form, since

ω1 = dϕ1(y, u), with ϕ1(y, u) = −B

J
y + ue−y.

Following (4.18), define

F2(y, ẏ, u, u̇) = F (y, ẏ, y(2), u, u̇, u(2)) − ϕ
(2)
1 (y, u)

=
B

J
(u̇e−y − ue−yẏ) − 2

K2
mK

J
e2y ẏ

Then,
∂F2

∂ẏ
= −B

J
u e−y − 2

K2
mK

J
e2y,

∂F2

∂u̇
=

B

J
e−y

and ω2 = (−B

J
u e−y − 2

K2
mK

J
e2y)dy + (

B

J
e−y)du

Now, ω2 is an exact one-form because ω2 = dϕ2(y, u), with

ϕ2(y, u) =
B

J
u e−y − K2

mK

J
e2y

Define F3(y, u) = F2(y, ẏ, u, u̇) − ϕ̇
(2)
2 (y, u) ≡ 0 . Then,

∂F3

∂y
≡ 0,

∂F3

∂u
≡ 0,

ω3 ≡ 0, and ϕ3(y, u) ≡ 0.
The change of variables⎧⎪⎪⎨

⎪⎪⎩
ξ1 = ln(x1)

ξ2 = −Km x2 +
B

J
ln(x1) − Ra + Rf

K

ξ3 = Km x3 − B

J
· Ra + Rf

K
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now yields the canonical form (4.11)⎧⎪⎪⎨
⎪⎪⎩

ξ̇1 = ξ1 + ϕ1(y, u)
ξ̇2 = ξ3 + ϕ2(y, u)
ξ̇3 = 0
y = ξ1

4.7.2 Linearization by Input-output Injection and Observer
Design 2

The problem considered in Section 4.7.1 can be extended by looking for a gen-
eralized state-space coordinate transformation (ξ1, . . . , ξn) = φ(x, u, u̇, . . . , u(s))
such that

rank
∂φ

∂x
= n (4.29)

and functions ϕi(y, u, u̇, . . . , u(s)), for i = 1, . . . , n, such that we can write⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ̇1 = ξ2 + ϕ1(y, u, u̇, . . . , u(s))
...

ξ̇n−1 = ξn + ϕn−1(y, u, u̇, . . . , u(s))
ξ̇n = ϕn(y, u, u̇, . . . , u(s))
y = ξ1

(4.30)

The terms ϕi in (4.30) are a special form of input-output injection and an
observer can be computed from (4.30) as follows.
Note that system (4.30) has the form{

ξ̇ = Aξ + ϕ(y, u, u̇, . . . , u(s))
y = Cξ

where (C, A) is a pair of constant matrices in canonical observer form. Then,
an estimate ξ̂ of the state ξ is obtained from the following system:

˙̂
ξ = Aξ̂ + ϕ(y, u, u̇, . . . , u(s)) + K(Cξ̂ − y) (4.31)

where K is chosen so that the eigenvalues of matrix A + KC are in the open
left half complex plane. Thus, the estimation error ξ̂ − ξ is asymptotically
stable. From assumption (4.29), locally x = φ−1(ξ1, . . . , ξn, u, u̇, . . . , u(s)) and
an estimate x̂ for the original state x of system (1.4) is given by

x̂ = φ−1(ξ̂1, . . . , ξ̂n, u, u̇, . . . , u(s))

Let us go back now to the problem of finding a generalized state-space
coordinate transformation (ξ1, . . . , ξn) = φ(x, u, u̇, . . . , u(s)) and a set of func-
tions ϕi(y, u, u̇, . . . , u(s)), for i = 1, . . . , n, which allow us to obtain the form
(4.30).
To this aim, let us consider the following sequence of differential one-forms.
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• set F0 = F and ϕ0 = 0;
• for k = 1, . . . , n, define

Fk := Fk−1 − ϕ
(n−k+1)
k−1 (4.32)

ωk =
∂Fk

∂y(n−k)
dy +

m∑
j=1

∂Fk

∂u
(n−k+s)
j

du
(s)
j (4.33)

Denoting shortly ∧du
(l)
1 ∧ du

(l)
2 ∧ · · · ∧ du

(l)
m by ∧du(l), if dωk ∧ du ∧ du̇ · · · ∧

du(s−1) �= 0, then stop.
If, otherwise, dωk ∧ du ∧ du̇ · · · ∧ du(s−1) = 0, then let ϕk(y, u, u̇, · · · , u(s)) be
a solution of

∂ϕk

∂y
dy +

m∑
j=1

∂ϕk

∂u
(s)
j

du
(s)
j = ωk (4.34)

for 1 ≤ k ≤ n − 1, and

ϕn(y, u, u̇, · · · , u(s)) = Fn (4.35)

A necessary and sufficient condition for the existence of a generalized state co-
ordinate transformation (ξ1, . . . , ξn) = φ(x, u, u̇, . . . , u(s)) that, together with
the functions ϕi(y, u, u̇, . . . , u(s)) constructed above, allows us to put the sys-
tem Σ into the form (4.30), can now be formulated as follows:

Theorem 4.21. Given a single output, observable system Σ of the form
(1.4) and letting the function ϕi(y, u, u̇, . . . , u(s)) for i = 1, . . . , n be con-
structed as above, there exists locally a state-space coordinate transformation
(ξ1, . . . , ξn) = φ(x, u, u̇, . . . , u(s)), satisfying (4.29), such that (4.30) holds if
and only if

dωk ∧ du ∧ du̇ · · · ∧ du(s−1) = 0 (4.36)

for 1 ≤ k ≤ n, where the ωk’s are defined by (4.33).

Before proving Theorem 4.21, let us consider an illustrative example.

Example 4.22. Let Σ be the system defined by the equations⎧⎨
⎩

ẋ1 = x2 · u2

ẋ2 = 0
y = x1

(4.37)

The input-output differential equation of Σ is

y(2) = F (y, ẏ, u, u̇) =
2ẏ · u̇

u
(4.38)

For s = 0 or s = 1, conditions (4.36) are not satisfied, i.e., the lineariza-
tion problem cannot be solved by a state coordinate transformation and in-
put/injection functions that do not involve time derivatives of u of order
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greater than 1. Taking s = 2 and applying the above procedure, one gets
F1 = 2ẏu̇/u. The differential form ω1 given by (4.33)is

ω1 =
∂F1

∂ẏ
dy +

∂F1

∂u(3)
dü =

2u̇

u
dy (4.39)

and condition (4.36) of Theorem 4.21 is satisfied for k = 1, since

dω1 ∧ du ∧ du̇ = 0

The function ϕ1(y, u, u̇, ü) given by (4.34) is

ϕ1(y, u, u̇, ü) =
2y · u̇

u
(4.40)

For k = 2, F2 = 2(u̇2/u2 − ü/u) · y, and the differential form ω2 is

ω2 =
∂P2

∂y
dy +

∂P2

∂ü
dü = 2(

u̇2

u2
− ü

u
)dy − 2y

u
dü (4.41)

Again, condition (4.36) of Theorem 4.21 is satisfied and the function ϕ2(y, u, u̇, ü)
given by (4.34) is

ϕ2 = 2(
u̇2

u2
− ü

u
) · y (4.42)

Then, we have the generalized state coordinate transformation (ξ1, ξ2) =
(x1, x2u

2 − 2x1 · u̇/u), and we can write⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ̇1 = ξ2 +
2y · u̇

u

ξ̇2 = 2(
u̇2

u2
− ü

u
) · y

y = ξ1

(4.43)

Comparing with (4.15), an observer for Σ can now be constructed as shown
in Section 4.7.1.

Proof (Proof of Theorem 4.21.).
Necessity: Suppose that there exists a generalized state coordinate transfor-
mation ξ = φ(x, u, u̇, · · · , u(s−1)), satisfying (4.29), and functions ϕi(y, u) for
i = 1, . . . , n such that (4.30) holds. Then, we can write

y(n) = F (ξ, u, u̇, · · · , u(s−1))
= ϕ

(n−1)
1 + ϕ

(n−2)
2 + · · · + ϕn

= F0

Therefore, we have

F1 = F0

=
∂ϕ1

∂y
y(n−1) +

m∑
j=1

∂ϕ1

∂u
(s)
j

u
(n−1+s)
j + Θ1(y, · · · , y(n−2), u, · · · , u(n−2+s))
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and the differential form ω1, according to (4.33), is given by

ω1 =
∂F1

∂y(n−1)
dy +

m∑
j=1

∂F1

∂u
(n−1+s)
j

du
(s)
j

=
∂ϕ1

∂y
dy +

m∑
j=1

∂ϕ1

∂u
(s)
j

du
(s)
j

Then, the condition dω1 ∧ du ∧ du̇ ∧ · · · ∧ du(s−1) = 0 is satisfied. The proof
for steps 2 ≤ k ≤ n follows the same lines.
Sufficiency: Assume that the condition (4.36) is satisfied and let ϕk(y, u, u̇, · · · , u(s))
be given by (4.34). From the definition of ϕ1, . . . , ϕn−1,

ξ̇i = ξi+1 + ϕi, for i = 1, . . . , n − 1

Computing ξ̇n, one gets

ξ̇n = y(n) − ϕ
(1)
n−1 − ϕ

(2)
n−2 − · · · − ϕ

(n−1)
1 (4.44)

and, finally, from (4.36), (4.32), and (4.34), y(n) = ϕn + ϕ
(1)
n−1 + · · · + ϕ

(n−1)
1 .

Therefore, ξ̇n = ϕn, and the result follows.

Problems

4.1. Given a system Σ of the form (1.4), show that the equality O∞ = X ∩
(Y + U) holds.

4.2. Given a system Σ of the form (1.4), prove that

dim O∞ = rankK

[
∂(y, ẏ, . . . , y(n−1))

∂x

]
(4.45)

4.3. Consider the linear system{
ẋ = Ax + Bu
y = Cx

Compute the spaces Yk and Ok, for k ≥ 1, in terms of the matrices A and C,
and derive the standard observability criterion for linear systems.
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Systems Structure and Inversion

Given a system Σ with input u and output y, the idea of designing an inverse
system Σ−1, whenever it is possible, is quite appealing, since the inverse sys-
tem may provide a way to compute the control input u(t) that is required to
obtain a (desired) output y(t) from Σ. The notion of inverse system is intro-
duced and discussed in this chapter, as well as that of an inversion algorithm.
Minimality of inverse systems is considered as well and it is discussed in the
light of the intrinsic notion of zero dynamics. This, in turn, is shown to play
a key role in stabilization problems and in output tracking problems with
internal stability.

5.1 Introductory Examples

5.1.1 A Resistor Circuit

Let Σ be a static system (i.e. consisting only of algebraic equations), whose
input u and output y represent, respectively, the voltage and the current in a
resistor R.

�
��

��
��
��
�����

�
u

�
y

Fig. 5.1. Resistor circuit

The input-output equation of Σ is

y = (1/R)u
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Its inverse system Σ−1 operates generating its “output” u(t) from the “input”
y(t) and it is easily defined through its input-output equation

u = Ry

Clearly, one can use Σ−1 to determine the input required to force the system
Σ to produce any desired output.

5.1.2 An Induction-resistor Circuit

Now let Σ denote the series connection of an induction element L with a
resistor R. The input u(t) represents the voltage and the output y(t) represents
the current in the circuit. The input-output equation of Σ is ẏ = −(R/L)y+u
and a state-space realization is{

ẋ = −(R/L)x + u
y = x

An inverse system Σ−1 should take y(t) as input and it should produce u(t) as
output. A candidate inverse system can be described by the set of equations⎧⎨

⎩
ż = ẏ
u = (R/L)z + ẏ

z(0) = x(0)

A different candidate, however, may be described in a simpler way by the
equation

u = ẏ + (R/L)y

5.2 Inverse Systems

To discuss the notion of system inversion in general terms, let us consider a
system Σ of the form (1.4), that is,

Σ =
{

ẋ = f(x) + g(x)u
y = h(x) (5.1)

where x ∈ IRn, u ∈ IRm, y ∈ IRp, and the entries of f , g and h are meromorphic
functions of x.

Definition 5.1. Right inverse The system{
ż = F (z, y, ẏ, . . . , y(ν))
u = H(z, y, ẏ, . . . , y(ν))

(5.2)

is a right inverse system for Σ if there exists z(0) such that the output y(t) of
(5.1) equals the input y(t) of (5.2) whenever the input u(t) of (5.1) is chosen
as the output of (5.2).
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�u
Σ �y

Fig. 5.2. System Σ

�y
Right inverse �u

Σ �y

Fig. 5.3. Right inverse system

The definition of a left inverse is obtained essentially by interchanging the
roles of (5.1) and (5.2).

Definition 5.2. Left inverse The system{
ż = F (z, y, ẏ, . . . , y(ν))
u = H(z, y, ẏ, . . . , y(ν))

(5.3)

is a left inverse system for system (5.1) if the output u(t) of (5.3) equals the
input u(t) of (5.1) whenever the input y(t) of (5.3) is chosen as the output of
(5.1).

�y
Σ �u

Left inverse �y

Fig. 5.4. Left inverse system

5.3 Structural Indices

To handle the problem of constructing, if possible, the inverse of a given sys-
tem, we need to introduce a number of tools and notions related to structural
properties. To begin with, let us recall that our study of accessibility was
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based on the notion of relative degree, given in Definition 3.7, of a function,
that may be viewed as an output. In this case, the relative degree represents
the delay existing between the control input and the output function. More
precisely, it is the order of differentiation which has to be applied to the output
to have explicit dependence on the input. From this point of view, this notion
describes the so-called structure at infinity in the single output case. More
generally, the structure at infinity of a nonlinear system displays, roughly
speaking, the delay structure existing between the input and the output in
the multivariable case. In this section, the structure at infinity of a nonlinear
system will be formally defined and studied, and an algorithm for computing
it will be introduced.

5.3.1 Structure at Infinity

Given the system (5.1), one can naturally associate with Σ the chain of sub-
spaces E0 ⊂ E1 ⊂ . . . ⊂ En of E defined by

E0 = spanK{dx}
... (5.4)

En = spanK{dx, dẏ, . . . , dy(n)}

Definition 5.3. Given the chain of vector spaces (5.4), the list of integers
{σk, k = 1, . . . , n} defined by

σk = dimK
Ek

Ek−1
(5.5)

is called the structure at infinity of Σ.

The list given by (5.5) contains structural information on the system that
plays a crucial role in the solution of many control problems ([22, 42, 132]).
The list {sk, k = 1, . . . , n}, defined by

s1 = σ1, sk = σk − σk−1, k = 2, . . . , n (5.6)

describes the so-called zeros at infinity of Σ as follows:

• s1 is the number of zeros at infinity whose order equals 1;
• si is the number of zeros at infinity whose order equals i.

In relation to the structure at infinity, two more lists of integers can be con-
sidered.

• {n1, . . . , np}, where ni is the the relative degree of the output component
yi; each ni is said to represent the order of the zero at infinity of the output
component with which it is associated;
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• {n′
1, . . . , n

′
p}, the list of integers obtained by duality from {sk, k = 1, . . . , n}

(i.e., from the relation σi = card{n′
j | n′

j ≤ i})); such a list is said to
represent the orders of the zeros at infinity of the system.

One more notion will be used in the following.

Definition 5.4. The essential order nie of the scalar output component yi is
defined by

nie = min{k ∈ IN |
dy

(k)
i �∈ spanK{dx, dẏ, . . . , dy(k−1), dy

(k)
j �=i, dy(k+1), . . . ,dy(n)}}. (5.7)

To make the meaning of these various lists of integers clearer, let us consider
the following example.

Example 5.5. Let Σ be the system defined by the equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = u1

ẋ2 = x3u1

ẋ3 = u2

y1 = x1

y2 = x2

Computing the derivatives of the output, we get{
ẏ1 = u1

ẏ2 = x3u1 = x3ẏ1

Then, {n1, n2} = {1, 1}, since a component of the input appears in the first
derivative of both output components. However, to get all the components of
the input, we have to derive ẏ2 further.

ÿ2 = ẋ3ẏ1 + x3ÿ1 = u2ẏ1 + x3ÿ1

Then, {n′
1, n′

2} = {1, 2}. Now, let us compute the subspaces (5.4) associated
with the system Σ.

E0 = spanK{dx}, E1 = spanK{dx, du1}, E2 = spanK{dx, du1, du̇1, du2}
Hence, σ1 = 1 and σ2 = 2. We have also that n1e = 2 and n2e = 2.

Note that for a single-output system the relative degree of y = h(x) equals
the order of the zero at infinity of Σ.
This fact motivates the following definition.

Definition 5.6. The relative degree of a single output system Σ is the relative
degree of its output function.

A general algorithm for computing the structure at infinity of a given system
is discussed in Section 5.4.
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5.4 Structure Algorithm

The structure at infinity of a given system can be computed by applying
a suitable algorithm, called the structure algorithm, that turns out to be a
fundamental tool in the analysis of nonlinear dynamic systems. The structure
algorithm was first introduced by Silverman for linear time-invariant systems
[144], and it was then generalized to nonlinear systems in [74]. Then, Singh
further extended it in [145] and finally it appeared in [42] in the form we will
present hereafter.
The structure algorithm is also known as the inversion algorithm, or Singh’s
inversion algorithm, since, when a system is invertible, it allows us to express
the input as a function of the output, its time derivatives and, possibly, some
states. Thus it may be viewed as an algorithm that directly computes the
input necessary for generating a desired output function.
Control methods such as trajectory tracking or computed torque control in
robotics are special applications of the inversion algorithm.
To describe the algorithm, assume that a system of the form (5.1) is given.

Algorithm 5.7 (The Structure Algorithm)

Step 1.
Compute

ẏ =
∂h(x)

∂x
(f(x) + g(x)u)

and write

a1(x) :=
∂h(x)

∂x
f(x)

b1(x) :=
∂h(x)

∂x
g(x)

Then, ẏ = a1(x) + b1(x)u. Define

ρ1 = rank b1(x)

Permute, if necessary, the components of the output, so that the first ρ1 rows
of b1(x) are linearly independent over K. Denote by ˙̃y1 the vector consisting
of the first ρ1 rows of ẏ, and denote by ˙̂y1 the other p − ρ1 rows, so that

ẏ =
( ˙̃y1

˙̂y1

)

Since the last rows of b1(x) are linearly dependent upon the first ρ1 rows, we
can write

˙̃y1 = ã1(x) + b̃1(x)u
˙̂y1 = ˙̂y1(x, ˙̃y1)

where the last equation is affine in ˙̃y1. Finally, define
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B̃1(x) := b̃1(x)

Step k+1.

Suppose that in Steps 1 through k, ˙̃y1, . . . , ỹ
(k)
k , ŷ

(k)
k have been defined so that

˙̃y1 = ã1(x) + b̃1(x)u
...

ỹ
(k)
k = ãk(x, ˙̃y1, . . . , ỹ

(k)
1 , . . . , ỹ

(k−1)
k−1 , ỹ

(k)
k−1)

+b̃k(x, ˙̃y1, . . . , ỹ
(k−1)
1 , . . . , ỹ

(k−1)
k−1 )u

(5.8)

ŷ
(k)
k = ŷ

(k)
k (x, ˙̃y1, . . . , ỹ

(k)
1 , . . . , ỹ

(k)
k )

For every i, j, and k, ỹ
(j)
i and ŷ

(k)
k are meromorphic functions in K.

Suppose that the matrix B̃k := [b̃T
1 , · · · , b̃T

k ]T has a full row rank equal to ρk.
Then, compute

ŷ
(k+1)
k =

∂ŷ
(k)
k

∂x
[f(x) + g(x)u] +

k∑
i=1

k∑
j=i

∂ŷ
(k)
k

∂ỹ
(j)
i

ỹ
(j+1)
i

and write it as

ŷ
(k+1)
k = ak+1(x, ỹ

(j)
i , 1 ≤ i ≤ k, i ≤ j ≤ k + 1)

+bk+1(x, ỹ
(j)
i , 1 ≤ i ≤ k, i ≤ j ≤ k) u

Define Bk+1 := [B̃T
k , bT

k+1]
T , and

ρk+1 := rank Bk+1

Permute, if necessary, the components of ŷ
(k+1)
k so that the first ρk+1 rows of

Bk+1 are linearly independent. Decompose ŷ
(k+1)
k as

ŷ
(k+1)
k =

⎛
⎜⎝ ỹ

(k+1)
k+1

ŷ
(k+1)
k+1

⎞
⎟⎠

where ỹ
(k+1)
k+1 consists of the first (ρk+1−ρk) rows. Since the last rows of Bk+1

are linearly dependent on the first ρk+1 rows, one can write

˙̃y1 = ã1(x) + b̃1(x)u
...

ỹ
(k+1)
k+1 = ãk+1(x, ỹ

(j)
i , 1 ≤ i ≤ k, i ≤ j ≤ k + 1)

+b̃k+1(x, ỹ
(j)
i , 1 ≤ i ≤ k, i ≤ j ≤ k)u

(5.9)
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ŷ
(k+1)
k+1 = ŷ

(k+1)
k+1 (x, ỹ

(j)
i , 1 ≤ i ≤ k + 1, i ≤ j ≤ k + 1). (5.10)

Finally, set B̃k+1 := [B̃T
k , b̃T

k+1]
T .

The algorithm stops when

rank[∂(y, ˙̂y1, . . . , ŷ
(k+1)
k+1 )]/∂x = rank[∂(y, ˙̂y1, . . . , ŷ

(k)
k )]/∂x.

End of the algorithm.

Assuming that Algorithm 5.7 stops at step k, the orders of the zeros at infinity,
as well as the essential orders, may be computed from (5.9). The list of the
orders of the zeros at infinity is given by the list of the smallest orders of
differentiation of yi, i = 1, . . . , p that occur in (5.9), and the essential order
nie equals the largest order of differentiation of yi in (5.9).
Actually, the structure algorithm computes a basis for the chain of subspaces
(5.4).

Theorem 5.8. [42] A basis for Ek is given by

{dx, d ˙̃y1, . . . ,dỹ
(k)
1 , . . . ,dỹ

(k−1)
k−1 , dỹ

(k)
k−1, dỹ

(k)
k }

Proof. Note that for k = 1, {dx, d ˙̃y1} is a set of generators of E1 since
d ˙̂y1 ∈ spanK{dx, d ˙̃y1}. Since b̃1(x) has a full row rank, the set also consists of
independent vectors and it is thus a basis for E1. The rest of the proof may
be done by induction and is reported in [42].

It follows from the above theorem that the two lists {σk, k = 1, . . . , n} and
{ρk, k = 1, . . . , n} coincide.

Definition 5.9. The integer ρn obtained by Algorithm 5.7 is called the rank
of the system Σ.

5.4.1 A Pseudoinverse System

A so-called pseudoinverse system Σ−1 can now be constructed by Algorithm
5.7. Assume that the algorithm stops at Step k, then the matrix B̃k has a full
rank equal to ρ, and rank Bk = rank Bk+1 = · · · = rank Bn.
Then, the first ρ components of u, say (u1, · · · , uρ), can be obtained by solving
the system (5.9), and we can write⎡

⎢⎣
u1

...
uρ

⎤
⎥⎦ = F (x, ẏ, · · · , y(n), uρ+1, · · · , um) (5.11)

for some suitable function F.
The system Σ−1 will be defined as follows.
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Σ−1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż = f(z) + g(z)

⎡
⎢⎢⎢⎣

F (z, ẏ, · · · , y(n), uρ+1, · · · , um)
uρ+1

...
um

⎤
⎥⎥⎥⎦

⎡
⎢⎣

u1

...
uρ

⎤
⎥⎦ = F (z, ẏ, · · · , y(n), uρ+1, · · · , um)

(5.12)

In the special case of square invertible systems (i.e. ρk = m = p), the system
(5.9) has a unique solution u; therefore, an inverse system Σ−1 is uniquely
defined.

5.4.2 Examples

Example 5.10. Consider the unicycle in Example 4.18. The inversion algorithm
5.7 yields

ẏ1 = (cos x3)u1 (5.13)
ẏ2 = (sin x3)u1 = (tan x3)ẏ1 (5.14)

The second step of Algorithm 5.7 gives

ÿ2 = (tan x3)ÿ1 + (1/ cos2 x3)ẏ1u2

and the algorithm stops. The input is then obtained as

u1 = ẏ1/ cos x3

u2 = [ÿ2 − (tan x3)ÿ1] cos2 x3

ẏ1

(5.15)

A pseudoinverse is thus obtained as

Σ−1
1 :

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ż1 = ẏ1

ż2 = (tan z3)ẏ1

ż3 =
[ÿ2 − (tan z3)ÿ1] cos2 z3

ẏ1

u1 = ẏ1/ cos z3

u2 = [ÿ2 − (tan z3)ÿ1] cos2 z3

ẏ1

(5.16)

Step 1 of the Structure Algorithm may be performed in a different way, writing

ẏ2 = (sin x3)u1 (5.17)
ẏ1 = (sin x3)u1 = (cot x3)ẏ2 (5.18)

A different pseudoinverse is then obtained as
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Σ−1
2 :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ̇1 = ẏ2 cot ζ3

ζ̇2 = ẏ2

ζ̇3 =
[ÿ2 cot ζ3 − ÿ1] sin2 ζ3

ẏ2

u1 = ẏ2/ sin ζ3

u2 =
[ÿ2 cot ζ3 − ÿ1] sin2 ζ3

ẏ2

(5.19)

The space E1 admits the basis {dx, dẏ1} and the space E2 admits the basis
{dx, dẏ1, dÿ1, dÿ2}. The unicycle has one zero at infinity of order 1 and one
zero at infinity of order 2. Both essential orders equal 2.

Example 5.11. Consider the following system with two inputs and one output.⎧⎨
⎩

ẋ1 = x2u1 + u2

ẋ2 = u2

y = x1

(5.20)

The Structure Algorithm yields ẏ = x2u1 + u2 which can be solved either in
u1 or in u2. In one case, one gets the pseudoinverse Σ−1

1

Σ−1
1 :

⎡
⎣ ż1 = ẏ

ż2 = ẏ − z2u1

u2 = ẏ − z2u1

(5.21)

and in the second case, the pseudoinverse Σ−1
2 is obtained

Σ−1
2 :

⎡
⎢⎢⎣

ζ̇1 = ẏ

ζ̇2 = u2

u1 =
ẏ − u2

ζ2

(5.22)

Different (pseudo-)inverse systems can be obtained by choosing different
components for ỹ

(k)
k in the Structure Algorithm 5.7. This can be seen also in

the case of the unicycle in Example 4.18.
Step 1 of the Structure Algorithm may be performed in a different way, writing

ẏ2 = (sin x3)u1 (5.23)
ẏ1 = (sin x3)u1 = (cot x3)ẏ2 (5.24)

Thus, a pseudoinverse, different from (5.16), is obtained:

Σ−1
2 :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ̇1 = ẏ2 cot ζ3

ζ̇2 = ẏ2

ζ̇3 =
[ÿ2 cot ζ3 − ÿ1] sin2 ζ3

ẏ2

u1 = ẏ2/ sin ζ3

u2 =
[ÿ2 cot ζ3 − ÿ1] sin2 ζ3

ẏ2

(5.25)
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Example 5.12. Let us continue with the example of the unicycle. Both in (5.16)
and in (5.19), the output of the inverse system depends only on the third
dynamic. Thus,

Σ−1
1r =:

⎡
⎢⎢⎢⎣

ż3 =
[ÿ2 − (tan z3)ÿ1] cos2 z3

ẏ1

u1 = ẏ1/ cos z3

u2 = [ÿ2 − (tan z3)ÿ1] cos2 z3

ẏ1

(5.26)

is a (reduced) inverse system as well as

Σ−1
2r :

⎡
⎢⎢⎢⎢⎣

ζ̇3 =
[ÿ2 cot ζ3 − ÿ1] sin2 ζ3

ẏ2

u1 = ẏ2/ sin ζ3

u2 =
[ÿ2 cot ζ3 − ÿ1] sin2 ζ3

ẏ2

(5.27)

Moreover, the relation z3 = arctan(ẏ2/ẏ1) obtained from (5.14), where z3 has
been substituted for x3, allows us to obtain a static (dynamic-free) inverse:⎧⎨

⎩
u1 =

√
ẏ2
1 + ẏ2

2

u2 =
[ÿ2ẏ1 − ÿ1ẏ2]

ẏ2
1 + ẏ2

2

The same result can be obtained by eliminating ζ3 in (5.27).

Example 5.13. Consider again the circuit of Section 5.1.2{
ẋ = −(R/L)x + u
y = x

The Structure Algorithm provides ẏ = −(R/L)x + u and the inverse system⎧⎨
⎩

ż = ẏ
u = (R/L)z + ẏ

z(0) = x(0)

However, since we have y = x from the system’s equations, a static, state-free
inverse system can be obtained as

u = ẏ + (R/L)y

5.4.3 Reduced Inverse Systems

From the last Example, it is clear that the complexity of inverse systems
obtained by (5.12) may be reduced [165]. In this regard, we have the following
result. Let us denote by H the matrix
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H(x, ˙̃y1, · · · , ỹ(k)
k :=

⎡
⎢⎢⎢⎣

h(x)
˙̂y1(x, ˙̃y1)
...
ŷ
(k)
k (x, ˙̃y1, . . . , ỹ

(k)
1 , . . . , ỹ

(k)
k )

⎤
⎥⎥⎥⎦ (5.28)

whose rows are given by the output equations of system (5.1) and from the
inversion equations (5.9).

Theorem 5.14. Given the system Σ, there exists a pseudoinverse of dimen-
sion

s = n − rank
∂H

∂x

Proof. Consider the set of equations

H(x, ˙̃y1, · · · , ỹ(k)
k ) − ŷ = 0 (5.29)

where H is the matrix (5.28) and

ŷ :=

⎡
⎢⎢⎢⎣

y
ˆ̇y1
...
ŷ
(k)
k

⎤
⎥⎥⎥⎦

Substitute zi for xi for i = 1, ..., n in H . Without loss of generality, assume that
the n−s first rows of ∂H/∂z are independent and denote by H̃ the (n−s) di-
mensional vector consisting of the first (n−s) components of H(z, ˙̃y1, · · · , ỹ(k)

k ).
Without loss of generality, we can also assume that

rank
∂H̃

∂(z1, ..., zn−s)
= n − s

By the implicit function theorem, we can solve in (z1, ..., zn−s) the equation

H̃(z, ˙̃y1, · · · , ỹ(k)
k ) − ȳ = 0

where ȳ is the vector consisting of the (n − s) first components of ŷ. Thus,⎛
⎜⎝

z1

...
zn−s

⎞
⎟⎠ = Ĥ(zn−s+1, ..., zn, ˙̃y1, · · · , ỹ(k)

k ) (5.30)

for some suitable function Ĥ . Rewrite (5.12), removing the n−s first equations
of the dynamic ż. In F (z1, ..., zn−s, zn− s + 1, ..., zn, ẏ, · · · , y(n), uρ+1, · · · , um),
substitute (z1, ..., zn−s) using (5.30) to get the reduced inverse system Σ−1

R

defined by the equations



5.5 Invertibility 83⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

żn−s+1

...
żn

⎞
⎟⎠ = f̃(·) + g̃(·)

⎡
⎢⎢⎢⎣

F̃ (zn−s+1, ..., zn, ỹ, ŷ, uρ+1, · · · , um)
uρ+1

...
um

⎤
⎥⎥⎥⎦

⎡
⎢⎣

u1

...
uρ

⎤
⎥⎦ = F̃ (zn−s+1, ..., zn, ỹ, ŷ, uρ+1, · · · , um)

(5.31)

where f̃(·) = f̃(zn−s+1, ..., zn, ỹ, ŷ) and g̃(·) = g̃(zn−s+1, ..., zn, ỹ, ŷ). Σ−1
R is

the desired reduced inverse of dimension s.

5.5 Invertibility

We can now state the main results about the existence of inverse systems.

Definition 5.15. System (1.1) is said to be left- (resp., right-) invertible if
there exists a left (resp., right) inverse system according to Definitions 5.2
and 5.1 respectively.

Proposition 5.16. [51] System (1.1) is left- (resp., right-) invertible if and
only if its rank ρ equals m (resp., p).

Example 5.17. Example 5.10 continued.
From (5.15), a left inverse system of the unicycle is given by the equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
η̇ = [ÿ2 − (tan η)ÿ1] cos2 η

ẏ1

u1 = ẏ1/ cos η

u2 = [ÿ2 − (tan η)ÿ1] cos2 η
ẏ1

From (5.14), x3 = arctan(ẏ2/ẏ1) and thus, replacing x3 by η, a static inverse
system is given by the equations⎧⎪⎪⎨

⎪⎪⎩
u1 =

√
ẏ2
1 + ẏ2

2

u2 =
ẏ1ÿ2 − ẏ2ÿ1

ẏ2
1 + ẏ2

2

Example 5.18. Consider the linear system whose transfer function equals
(s + 1)/s2 and in state-space form reads⎧⎨

⎩
ẋ1 = x2

ẋ2 = u
y = x1 + x2
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The inversion algorithm yields ẏ = x2 + u and thus, a ”reduced” inverse [165]
is {

η̇ = −η + ẏ
u = −η + ẏ

.

In the linear case, the existence of a reduced inverse system, as it happens in
Example 5.18, is explained by the presence of one transmission zero. In the
non linear case, the situation is more complicated but, nevertheless, interesting
relations have been established.

5.6 Zero Dynamics

In the nonlinear context, there exist three different notions that generalize
the concept of transmission zeros of a linear time-invariant system, as it is
shown in [88]. A fundamental one is the notion of zero dynamics that can be
introduced by reduced inverse dynamics, as defined in the previous section.
To clarify the situation, we start by a particular case, under the following
assumptions.

Assumption 5.19 System (5.1) is minimal, i.e., observable and accessible.

Assumption 5.20 System (5.1) is square invertible.

Assumption 5.21 The trajectory y ≡ 0 is not singular for the reduced in-
verse

Σ−1
R :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

żn−s+1

...
żn

⎞
⎟⎠ = f̃(zn−s+1, ..., zn, ỹ, ŷ)

+g̃(zn−s+1, ..., zn, ỹ, ŷ)
[
F̃ (zn−s+1, ..., zn, ỹ, ŷ)

]⎡
⎢⎣

u1

...
um

⎤
⎥⎦ = F̃ (zn−s+1, ..., zn, ỹ, ŷ)

(5.32)
The dynamics⎛
⎜⎝

żn−s+1

...
żn

⎞
⎟⎠ = f̃(zn−s+1, ..., zn, 0, ..., 0)

+g̃(zn−s+1, ..., zn, 0, ..., 0)F̃ (zn−s+1, ..., zn, 0, ..., 0)

(5.33)

are well defined.

Definition 5.22. The zero dynamics of system (5.1) is defined by the dynam-
ics (5.33) of a reduced inverse driven by y ≡ 0.



5.6 Zero Dynamics 85

By the structure algorithm, we can immediately obtain the following:

Proposition 5.23. If the system is invertible, then the dimension of the zero
dynamics equals

• n −∑i=m
i=1 n′

i, where the n′
i denote the orders of the zeros at infinity,

• dimO∞ − dim(X ∩ Y).

Examples

Example 5.24. Given the linear system⎧⎪⎪⎨
⎪⎪⎩

ẋ1 = x2

ẋ2 = x1 + x2 + u
ẋ3 = 0
y = x1 + x3

whose transfer function is
1

s2 − s − 1
, the inversion algorithm gives

ẏ = x2, y(2) = x1 + x2 + u (5.34)

Because ρ = 2, the system is invertible and the inverse system is given by the
equations ⎧⎪⎪⎨

⎪⎪⎩
ż1 = z2

ż2 = y(2)

ż3 = 0
u = y(2) − z1 − z2

.

Equations (5.29) are, in this case, y = x1 + x3 and ẏ = x2. Solving with
respect to x1 and x2 and substituting zi for xi, for i = 1, 2, we obtain⎧⎪⎪⎨

⎪⎪⎩
ż1 = ẏ

ż2 = y(2)

ż3 = 0
u = y(2) − ẏ − y + z3

The reduced inverse is therefore{
ż3 = 0
u = y(2) − ẏ − y + z3

whose transfer function is s2 − s − 1.
Note that this is an inverse system in the sense of Definition 5.2, since the
substitution of y and ẏ in u = y(2) − ẏ − y + z3 yields u = u − x3 + z3. Pick
z3(0) = x3(0) and the result follows.
A minimal realization of the transfer function s2 − s− 1 consists of the static
system

u = y(2) − ẏ − y

which is not an inverse system in the sense of Definition 5.2 since the substi-
tution of (5.34) in u = y(2) − ẏ − y yields u = u − x3.
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Example 5.25. Consider the system⎧⎨
⎩

ẋ1 = x2 + u
ẋ2 = −x2

1 − uα

y = x1

The inverse system is ⎧⎨
⎩

ż1 = ẏ
ż2 = −z2

1 − (ẏ − z2)α

u = ẏ − z2

Substitute y for z1 and get the reduced inverse system{
ż2 = −y2 − (ẏ − z2)α

u = ẏ − z2

Set y ≡ 0, and the zero dynamics is obtained as

ż2 = (−1)α+1zα
2

Example 5.26.
ẋ1 = x2

ẋ2 = x1 + x2 + u
ẋ3 = 0
y = x1 · x3

The inversion algorithm yields

a) y = x1 · x3

b) ẏ = x2 · x3

c) y(2) = (x1 + x2)x3 + ux3

(5.35)

For x3 �= 0, the inverse system is

ż1 = z2

ż2 = z1 + z2 +
y(2)

z3
− z1 − z2 =

y(2)

z3
ż3 = 0

u =
y(2)

z3
− z1 − z2

By solving with respect to x1 and x2 (5.35 a and b), we obtain

ż1 =
ẏ

z3

ż2 =
y(2)

z3
ż3 = 0

u =
y(2) − ẏ − y

z3
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The reduced inverse is therefore

ż3 = 0

u =
y(2) − ẏ − y

z3

Note that the input-output equation of the system is

u̇[ÿ − ẏ − y] − u[y(3) − ÿ − ẏ] = 0

Since u �≡ 0, it is equivalent to
ÿ − ẏ − y

u
= 0. This is not a well-posed

system because no notion of minimal realization applies and no notion of zero
dynamics applies.

Problems

5.1. Show that an accessible and observable single output system Σ has a
finite relative degree.
Hint: The output function y = h(x) cannot be zero, and it cannot be an
autonomous element of KΣ .

5.2. Given the system Σ defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = u1

ẋ2 = x3u1

ẋ3 = x4u1

...
ẋn−1 = xnu1

ẋn = u2

y1 = x1

y2 = x2

(5.36)

compute

1. the order ni of the zero at infinity of each output component, yi;
2. the list of orders of the zeros at infinity;
3. the structure at infinity;
4. the rank.

5.3. Is the system Σ defined by⎧⎨
⎩

ẋ1 = x2u1 + u2

ẋ2 = u1

y = x1

(5.37)

right (left) invertible? In case of a positive answer, compute an inverse.
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5.4. Is the system Σ defined by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = x2u
ẋ2 = x3

ẋ3 = u
y1 = x1

y2 = x2

(5.38)

right (left) invertible? In case of a positive answer, compute an inverse.

5.5. Given the linear system Σ defined by⎧⎨
⎩

ẋ1 = x2

ẋ2 = u
y = x1 + x2

(5.39)

compute its zero dynamics.

5.6. Given the linear system Σ defined by⎧⎨
⎩

ẋ1 = x2

ẋ2 = u
y = x1 − x2

(5.40)

compute its zero dynamics.

5.7. Given the system Σ defined by⎧⎨
⎩

ẋ1 = x2
2 + x2u

ẋ2 = x2
2u

y = x1

(5.41)

compute its zero dynamics.
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System Transformations

The study of dynamic properties is often simplified by the possibility of modi-
fying the representation of a given system into some sort of special, or canoni-
cal. For linear systems, the class of transformations one can use includes state-
space isomorphisms, static state feedbacks, and output injections. In dealing
with nonlinear systems of the form (3.1) from a differential algebraic point of
view, it is useful to enlarge this general class, allowing transformations that
involve, together with the state, also inputs, outputs, and their derivatives.
In this way, it is possible to obtain a canonical form that generalizes, up to a
certain extent, the well known Morse canonical form for linear systems (see
[123]). It is possible to decompose a given systems into subsystems having
specific dynamic properties so that the analysis of the system structure is
simplified.
To describe how such canonical decomposition can be obtained, we introduce
in this chapter the notions of generalized state-space transformation, regular
generalized state feedback, and generalized output injection. Regular general-
ized state feedbacks can be viewed as a special case of quasi-static feedbacks,
which have been described and studied in [30, 32].

6.1 Generalized State-space Transformation

The notion of generalized state has been introduced in connection with dy-
namic representations involving a finite number of derivatives of the input
and that arise as solutions of the realization problem in a differential alge-
braic context [54]. Given a system Σ of the form (3.1), a vector ξ defines a
generalized state of Σ if there exists an integer k and functions φ and ψ such
that

ξ = φ(x, u, u̇, . . . , u(k))
x = ψ(ξ, u, u̇, . . . , u(k))

and, at least locally,
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ξ = φ(ψ(ξ, u, u̇, . . . , u(k)), u, u̇, . . . , u(k))
x = ψ(φ(x, u, u̇, . . . , u(k)), u, u̇, . . . , u(k))

Quite naturally, the notion of generalized state leads to that of generalized
state-space transformation that can be formalized as follows.

Definition 6.1. Let the system (3.1) be given. Then, a map

T : (x, u, u̇, . . . , u(k), . . .) → (ξ, u, u̇, . . . , u(k), . . .)

is called a generalized state-space transformation if and only if dim ξ = dimx
and there exists an integer k for which the following relations hold

span{dξ} ⊆ span{dx, du, du̇, . . . , du(k)}
span{dx} ⊆ span{dξ, du, du̇, . . . , du(k)}

It follows from the above definition that, denoting by X = span{dx} and
U = span{du, du̇, . . . , du(k), . . .}, a generalized state-space transformation T
gives rise to an isomorphism τ : E = X ⊕ U → E = X ⊕ U such that

i) τ(X ) ⊕ U � X ⊕ U
ii) τ(X ) is a closed subspace of E .

In particular, this means that there exist n elements ξ1, ξ2, . . . , ξn ∈ K such
that τ(X ) = span{dξ1, dξ2, . . . ,dξn} and that

∂(ξ1, ξ2, . . . , ξn)/∂(x1, x2, . . . , xn)

is generically nonsingular.

Example 6.2. Consider again the unicycle in Example 3.20. The relation⎧⎨
⎩

ξ1 = x1

ξ2 = x2

ξ3 = (sin x3)u1

(6.1)

defines a generalized state-space transformation ξ = φ(x, u) in the sense of
Definition 6.1, whose inverse x = ψ(ξ, u) is given by

ψ :

⎧⎨
⎩

x1 = ξ1

x2 = ξ2

x3 = arcsin(ξ3/u1)
(6.2)

6.2 Regular Generalized State Feedback

In this section, our aim is the generalization of the notion of unimodular
dynamic feedbacks to our framework. This is done by introducing the notion
of regular generalized state feedback, that appeared for the first time in [132].
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Letting, as usual, x and u be, respectively, the state and the output of a given
system Σ of the form (3.1) and letting v be a new input, we can consider an
input transformation of the form

u = ϕ(x, v, v̇, . . . , v(k))

for which there exists an inverse transformation of the form

v = ψ(x, u, u̇, . . . , u(k))

such that
u = ϕ(x, ψ, ψ̇, . . . , ψ(k))

v = ψ(x, ϕ, ϕ̇, . . . , ϕ(k))

This leads us to state the following definition.

Definition 6.3. A map

F : (x, u, u̇, . . . , u(k), . . .) → (x, v, v̇, . . . , v(k), . . .)

is called a regular generalized state feedback if and only if dim u = dim v and
there exists an integer k for which the following relations hold:

span{dv} ⊆ span{dx, du, du̇, . . . , du(k)}
span{du} ⊆ span{dx, dv, dv̇, . . . ,dv(k)}

Definition 6.3 implies that the input transformation considered is invertible.
Therefore, regular generalized state feedbacks form a group of feedback trans-
formations. It may be useful to note that regular generalized state feedbacks
in the sense of Definition 6.3 are a special case of quasi-static state feedbacks
as defined in [30, 32].
Denoting by X = span{dx} and by U = span{du, du̇, . . . , du(k), . . .}, a regular
generalized state feedback gives rise to an isomorphism

σ : E = X ⊕ U → E = X ⊕ U

such that

i) X ⊕ σ(U) � X ⊕ U
ii) σ(U) is a closed subspace of E .

This implies, in particular, that

∂(v1, v2, . . . , vm)/∂(u1, u2, . . . , um)

is generically nonsingular.
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Example 6.4. An input transformation of the form{
u1 = v1

u2 = v2 + v̇1
(6.3)

defines a regular generalized state feedback, or a quasi-static feedback, whose
inverse is {

v1 = u1

v2 = u2 − u̇1

Remark 6.5. Note that a relation of the form

u = v̇

does not define a regular generalized state feedback in the sense of Defini-
tion 6.3, since condition span{dv} ⊆ span{dx, du, du̇, . . . , du(k)} does not
hold or, in other terms, it is not possible to express v as a function of
x, u, u̇, . . . , u(k), . . ..

6.3 Generalized Output Injection

Concerning output injection, our aim, in this section, is to define a no-
tion that generalizes to our framework the classic concept. Output injection
is used to define the dynamics of observers, obtained by injecting the output
of the system, whose state has to be reconstructed, into an auxiliary system,
whose dynamics reproduces those of the observed system. In a more abstract
and conceptual way, output injection is instrumental in constructing canon-
ical forms, as in the construction of the already mentioned Morse canonical
form.
Here, we are more interested in the latter situation, and, therefore, we start by
considering, as possible candidates for a suitable notion of generalized input in-
jection, additive assignments of the form ẋ �→ ẋ+f(y, . . . , y(γ)), which involve
nonlinear functions of y and of its derivatives. Actually, the transformations of
this class may have undesired properties, since they could give rise to systems
with different observability properties with respect to the original ones. The
introduction of some restrictive conditions is therefore required. However, we
will not undertake now the task of developing an appropriate general notion
of output injection in this direction. To carry on a construction similar to that
of the Morse canonical form, we do not need to consider the whole class of
transformations induced by assignments of the form described above. It will
be sufficient to use only very particular output injections of the above kind
for obtaining a formal decomposition of a given system as described below
(compare with [132]). So, for the moment, letting x and y be, respectively,
the state and the output of a given system Σ of the form (3.1), we give only
a temporary and very general definition that will be made more consistent in
the following.
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Definition 6.6. A formal assignment of the form

ẋ �→ ẋ + f(y, . . . , y(γ)), (6.4)

is called an additive, universal output injection.

A deeper discussion about the generalization of the notion of output injection
will be the object of Section 6.5.

6.4 Canonical Form

Exploiting the notions introduced in the previous sections, we can now state
and prove the following result about the existence of a canonical form for
systems of the form (3.1).

Theorem 6.7. ([132, 134]) Given a system Σ of the form

Σ =
{

ẋ = f(x) + g(x)u
y = h(x) (6.5)

where the components of f(.), g(.) and h(.) are meromorphic functions of
x on an open subset D ⊆ IRn such that generically rank g(x) = m and

rank ∂h(x)
∂x

= p, there exist a generalized state-space transformation, a regu-
lar generalized state feedback, and a universal, additive output injection that
formally transform the system into the following form:

Σ′ =

⎧⎪⎨
⎪⎩

ζ̇ = Aζ + Bv
˙̂
ζ = f(ζ, ζ̂, v, . . . , v(k))
y = Cζ

(6.6)

Remark 6.8. We point out that the transformation from Σ to Σ′ is a formal
operation that cannot be physically implemented, as the output cannot be
injected into a given dynamic structure through its input and output channels.

Remark 6.9. Note that Σ′ is linear from an input-output point of view and
that the new input v is obtained in terms of x, u, and of a finite number of
derivatives of u.

Proof (Proof of Theorem 6.7.). The proof of the statement is constructive and
goes as follows. We start by constructing a suitable set of variables (ζ, v) by
following procedure:

Step 0 define ζ0 := y
Step k choose a subset of (ζk, vk) of the components of ζ̇k−1 such that

i) {dx, dv1, . . . ,dv
(k−1)
1 , dv2, . . . ,dv

(k−2)
2 , . . . ,dvk}

is a basis for span{dx, dẏ, . . . , dy(k)};
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ii) {dζ0, dζ1, dv1, . . . ,dv
(k−1)
1 , . . . ,dζk, dvk} is a basis for

span{dy, dẏ, . . . ,dy(k)}.
The procedure stops when (ζk+1, vk+1) is empty, i.e.,when

• {dx, dv1, . . . ,dv
(k−1)
1 , dv2, . . . ,dv

(k−2)
2 , . . . ,dvk, dv̇k} is a basis for

span{dx, dẏ, . . . ,dy(k), dy(k+1)}, and
• {dζ0, dζ1, dv1, . . . ,dv

(k)
1 , . . . ,dζk, dvk, dv̇k} is a basis for

span{dy, dẏ, . . . ,dy(k+1)}.
The structure algorithm provides a practical way of implementing the proce-
dure described.
At Step 1, start by writing

ζ̇0 = ẏ = (∂h/∂x)(f(x) + g(x)u) =

⎡
⎣ y11(x, u)

y12(x, u)
y13(x, u)

⎤
⎦

where

• ∂y11(x, u)/∂u has a full row rank and

rank ∂y11(x, u)/∂u = rank ∂ẏ/∂u

• ∂(y, y12)/∂x = has a full row rank and

rank ∂(y, y12)/∂x = rank ∂(y, y12, y13)/∂x

Then, define

v1 := y11(x, u) (6.7)
ζ1 := y12(x, u) (6.8)

It is easy to check that (ζ1, v1) verify conditions i), ii) above.
At Step k, after reordering if necessary, write

ζ̇k−1 = ẏ(k−1)2(x, u, . . . , u(k−2)) =

⎡
⎣ yk1(x, u, . . . , u(k−1))

yk2(x, u, . . . , u(k−1))
yk3(x, u, . . . , u(k−1))

⎤
⎦

where

• ∂yk1/∂u has a full row rank and

rank ∂(y11, . . . , y(k−1)1, yk1)/∂u = rank ∂(y11, . . . , y(k−1)1, ẏ(k−1)2)/∂u

• ∂yk2/∂x has a full row rank and

rank ∂(y, y12, . . . , yk2)/∂x = rank ∂(y, y12, . . . , yk2, yk3)/∂x
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Then, define

vk := yk1(x, u, . . . , u(k−1)) (6.9)
ζk := yk2(x, u, . . . , u(k−1)) (6.10)

It is easy to check that (ζk, vk) verify conditions i), ii) above.
Assume that the procedure stops at Step ν. Then, if the set of variables

ζ0 = y(x)
ζ1 = y12(x, u)

...
ζν = yν2(x, u, . . . , u(ν−1)

(6.11)

contains less then n elements, it can be completed by adding block variables

ζν+1 := ζν+1(x) (6.12)

so that equations (6.11) and (6.12) together define a generalized state-space
transformation

T : (x, u, u̇, . . . , u(ν−1)) → (ξ, u, u̇, . . . , u(ν−1)) (6.13)

Moreover, if the set of equations

v1 = y11(x, u)
...

vν = yν1(x, u, . . . , u(ν−1))

(6.14)

contains less then m elements, it can be completed by adding block variables

vν+1 = vν+1(u) (6.15)

so that equations (6.14) and (6.15) together define a diffeomorphism, linear in
u, on some open subset of IR(n+m(ν)). By solving for u, one obtains a regular
generalized state feedback described locally by

u = α(x, v, . . . , v(ν−1)) (6.16)

that satisfies the conditions

span{dv} ⊆ span{dx, du, du̇, . . . , du(ν−1)}
span{du} ⊆ span{dx, dv, dv̇, . . . ,dv(ν−1)}

To display the effect of both transformations (6.13) and (6.16) on the original
system, let us note that, when the procedure stops after ν steps (that is,
when y(ν+1)1 and y(ν+1)2 are empty), one has a partition of the vector ζ0, or
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equivalently of y, into, say, p blocks and the rank of ∂(y11(x, u), ..., yν1(x, u))
∂u

is, say, ρ. Then, expressing the system in the new variables,

Σ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ̇0h = ζ1h

...
ζ̇nhh = vh

yh = ζ0h for 1 ≤ h ≤ ρ

ζ̇0k = ζ1k

...
ζ̇nkk = fk(ζ01, . . . , ζnkk)
yk = ζ0k for ρ + 1 ≤ k ≤ p

ζ̇p+1 = f̂(ζ, v, . . . , v(ν))

Now, recalling how the variables ζ0, . . . , ζν have been defined in (6.8), (6.10),
the relations

ζ̇nkk = fk(ζ01, . . . , ζnkk)

can easily be modified by the additive, universal output injection defined by

ζ̇nkk �→ ζ̇nkk − fk(y(j)
i )

with 1 ≤ i ≤ ρ, 0 ≤ j ≤ nk and ρ + 1 ≤ k ≤ p. In this way,

Σ′′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ̇0h = ζ1h

...
ζ̇nhh = vh

yh = ζ0h for 1 ≤ h ≤ ρ

ζ̇0k = ζ1k

...
ζ̇nkk = 0
yk = ζ0k for ρ + 1 ≤ k ≤ p

ζ̇p+1 = f̂(ζ, v, . . . , v(ν))

(6.17)

that, denoting (ζ0, . . . , ζnpp) by ζ and denoting ζp+1 by ζ̂, finally gives the
desired form ⎧⎪⎨

⎪⎩
ζ̇ = Aζ + Bv
˙̂
ζ = f(ζ, ζ̂, v, . . . , v(ν))
y = Cζ
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Note that in representation (6.17), the subsystems described by the first two
blocks of (6.17) that represent the observable part of Σ′′ are invariant with re-
spect to generalized state-space transformations and regular generalized state
feedbacks.

The first one contains information on the algebraic structure at infinity of
Σ, which corresponds to that contained in the list I1 of the Morse canonical
form for linear systems. For each h, 1 ≤ h ≤ ρ, the list of orders of zeros at
infinity is {n1 + 1, . . . , nρ + 1}.

The list {nρ+1 + 1, . . . , np + 1} obtained by the second block coincides, if
Σ is linear, with the Morse list I3.

To decompose the last block, as can be done in the linear case, we should
now specialize and make further use of output injection. Although the gener-
alization of the notion of feedback we employed came in quite a natural way,
the situation is much more involved if we want to define a generalized notion
of output injection. We will come back on this point after discussing some
examples.

6.4.1 Example

The following system has been considered in [85] :

Σ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1 = u1

ẋ2 = x4 + u2

ẋ3 = x3u1 + u2

ẋ4 = u3

y1 = x1

y2 = x2 − x3

Applying the procedure described in Section 6.4, we obtain, at the various
steps:

Step 0
ζ01 := x1

ζ02 := x2 − x3

Step 1 ẏ =
(

u1

x4 − x3u1

)
v1 := u1

ζ12 := x4 − x3u1

Step 2 ÿ =
(

u̇1

u3 − x3u̇1 − x3u
2
1 − u2u1

)
v2 := u3 − x3u̇1 − x3u

2
1 − u2u1

The procedure stops, giving

ζ01 = x1

ζ02 = x2 − x3

ζ12 = x4 − x3u1

v1 = u1

v2 = u3 − x3u̇1 − x3u
2
1 − u2u1
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By choosing, for instance, ζ3 := x4 and v3 := u3, we obtain a generalized
state-space transformation and a regular generalized feedback such that the
system Σ takes the form

Σ′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ζ̇01 = v1

ζ̇02 = ζ12

ζ̇12 = v2

ζ̇3 = v3

y1 = ζ01

y2 = ζ02

6.4.2 Example

Let us consider the following system :

Σ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1 = u1

ẋ2 = x4 + u2

ẋ3 = u2

ẋ4 = x3 + u2

y1 = x1

y2 = x2 − x3

The system can be decoupled by a regular static state feedback. Then, the
transformation we get by applying the procedure described in Section 6.4
reduces to a usual state-space transformation and a regular state feedback.
At the various steps, we obtain

Step 0 ζ01 = x1

ζ02 = x2 − x3

Step 1 ẏ1 = u1 = y11(x, u) = v1

ẏ2 = x4 = y12(x, u) = ζ12

Step 2 ÿ1 = u̇1

ÿ2 = x3 + u2 = v2

The procedure stops, and we can complete the transformation by defining
ζ3 := x3.
The system Σ now takes the form

Σ′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ζ̇01 = v1

ζ̇02 = ζ12

ζ̇12 = v2

ζ̇3 = v2 − ζ3

y1 = ζ01

y2 = ζ02
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6.5 Generalizing the Notion of Output Injection

To obtain a complete analogy with the Morse canonical form in the non-
linear setting we are working in, we will now decouple ζp+1 in (6.17) from
(ζ01, . . . , ζnpp) and (v1, . . . , vρ), and then, possibly, we will split the corre-
sponding block into a controllable part and a noncontrollable part. In decou-
pling, we will use only transformations that may be viewed as generalizations
of the notion of output injection, followed, possibly, by changes in coordinates.
In the nonlinear framework, linear output injections have been used in [83],
and an additive nonlinear output injection, similar to the one used above,
has been employed in [104] for linearizing a nonlinear system, as well as in
[71, 72] for transforming a nonlinear system into a bilinear one. In general,
however, the problem of defining quite a general notion of output injection in
a nonlinear framework has not received much attention in the literature.
Here, we consider a class of output injections that are not necessarily additive
and whose definition is consistent with that of regular generalized state feed-
back formalized above and with that of quasi-static state feedback described
in [32].
The basic idea consists of considering transformations that modify the dy-
namics of a system Σ of the form (3.1) by an assignment of the form

ẋ −→ θ(ẋ, y, ẏ, . . . , y(r)) (6.18)

In other terms, this amounts to transforming the system

Σ =
{

ẋ = f(x) + g(x)u
y = h(x)

into

Σ′ =
{

ẋ = θ(f(x) + g(x)u, y, ẏ, . . . , y(r))
y = h(x).

(6.19)

In the following, to distinguish between the derivatives of y along the trajec-
tories of Σ and those along the trajectories of Σ′, we will denote the latter
ones by y[k], whereas y(k) will denote, as usual, the first ones.

Clearly, some restrictions must limit the choice of the function
θ(f(x) + g(x)u, y, ẏ, . . . , y(r)) to avoid pathological situations. In particular,
we want to prevent the possibility, for an output injection, of changing the
observability properties in going from Σ to Σ′. Let us illustrate this point by
the following example.

Example 6.10. Let us consider the system

Σ =

⎧⎨
⎩

ẋ1 = 0
ẋ2 = 0
y = x1x2

which obviously is not fully observable, and let us apply the additive, universal
output injection defined by θ(ẋ, y) = (ẋ1 + y, 0)t. The resulting system is
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Σ′ =

⎧⎨
⎩

ẋ1 = x1x2

ẋ2 = 0
y = x1x2

which turns out to be completely observable (in the sense of [45]), since x1 =
y2/y[1] and x2 = y[1]/y.

To go further, it is useful to recall the notion of observable space O〉\{�† of
a system Σ, defined in Chapter 4 as O∞ = X ∩ (Y + U). Then, given an
assignment of the form (6.18), let us denote by Hk and H̃k the vector spaces
defined as follows.

Hk = span{dy, dẏ, . . . , dy(k), du, du̇, . . .}
H̃k = span{dy, dy[1], . . . ,dy[k], du, du̇, . . .}

With the above tools, we can now define the notion of output injection, as in
[122].

Definition 6.11. An assignment ẋ −→ θ(ẋ, y, ẏ, . . . , y(r)), for some integer
r, is called a generalized output injection if the following conditions hold:

• H̃k ⊂ Hk+r−1

• Hk ⊂ H̃k+r−1

• ∂θ(ẋ, y, ẏ, . . . , y(r))
∂ẋ

is generically invertible.

The following Proposition, proved in [122], states that generalized output
injections behave well with respect to the property of observability.

Proposition 6.12. Given a system Σ of the form (3.1) and a generalized
output injection ẋ −→ θ(ẋ, y, ẏ, . . . , y(r)), let O∞ denote the observability
space of Σ and let Õ∞ = X ∩ (Ỹ + U), where Ỹ = span{dy[k], k ≥ 0}, denote
the observability space of the system Σ′, obtained by applying formally to Σ
the output injection defined by θ. Then, O∞ = Õ∞.

Let us now go back to the system Σ′′ described by (6.17) at the end of Sec-
tion 6.4. Denoting the block variables (ζ0h, . . . , ζnhh) for 0 ≤ h ≤ ρ, that is, the
variables of the first block in (6.17), by ζ1, the block variables (ζ0h, . . . , ζnhh)
for ρ + 1 ≤ h ≤ p, that is, the variables of the second block in (6.17), by ζ2

and the block variable ζp+1 by ζ3 and analogously denoting the block variables
(v1, . . . , vρ) by w1 and the vector consisting of then remaining inputs by w2,
we can rewrite (6.17) as

⎧⎪⎪⎨
⎪⎪⎩

ζ̇1 = f1(ζ1, w1)
ζ̇2 = f2(ζ2)
ζ̇3 = f3(ζ1, ζ2, ζ3, w1, . . . , w

(ν)
1 , w2)

y = h(ζ1, ζ2)

Let us focus on the subsystem
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ζ̇3 = f3(ζ1, ζ2, ζ3, w1, . . . , w
(ν)
1 , w2)) (6.20)

corresponding to the unobservable variable ζ3. The problem of decoupling ζ3

from ζ1, ζ2, and w1 by an output injection does not seem to be tractable in
general. So, we limit our attention to the situations in which the function f3

has particular properties. We assume that, for each component f3i of f3, there
exists a function χi(ζ3, w2) such that

f3i = Fi(χi(ζ3, w2), ζ1, ζ2, w1, . . . , w
(ν)
1 )

In other terms, we assume that there exists a separation function of the ob-
servable variables and the unobservable ones.
Then, we have the following two cases: either f3i does not depend on ζ3 and
on w2, and we chose χi(ζ3, w2) = 0, or (∂Fi/∂χi) �= 0.
By the construction carried on in the proof of Proposition 6.12, ζ1, ζ2, and
w

(k)
1 can be expressed in terms of y and its derivatives. Hence, we can define,

in the case in which f3i does not depend on ζ3 and on v2,

θi(ζ̇3i, y, ẏ, . . . , y(r)) = ζ̇3i − Fi(ζ1, ζ2, w1, . . . , w
(ν)
1 )

In the case in which ∂Fi/∂χi �= 0, we can apply the implicit function theorem
to get

χi = Gi(f3i, ζ1, ζ2, w1, . . . , w
(ν)
1 )

and we define

θi(ζ̇3i, y, ẏ, . . . , y(r)) = Gi(ζ̇3i, ζ1, ζ2, w1, . . . , w
(ν)
1 )

The map θ = (θ1, . . . , θi, . . .) defines a generalized output injection according
to definition 6.11 which transforms (6.20) into

ζ̇3 = χ(ζ3, w2)

where χ = (χ1, . . . , χi, . . .). The desired decoupling has been achieved, yielding
a maximal loss of accessibility.
Obviously, the separability condition seen above is sufficient only to assure
the possibility of decoupling ζ3 by an output injection. In addition, the fact
that such a condition is not feedback invariant, as pointed out in [139], shows
that complete characterization of the existence of an output injection with
the desired property is still far from being obtained.

Example 6.13. Let us consider the following system :

Σ =

⎧⎨
⎩

ζ̇1 = ζ2
1 · ζ2 + ζ2 · v1 + ζ2

2

ζ̇2 = v2

y = ζ2

(6.21)

For the right-hand side of (6.21), we can write
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ζ2
1 · ζ2 + ζ2 · v1 + ζ2

2 = F (χ(ζ1, v1), ζ2)

where χ = ζ2
1 + v1, F = χζ2 + ζ2

2 and
∂F

∂χ
= ζ2. We obtain χ =

F − ζ2
2

ζ2
. Now,

let us apply the generalized output injection θ(ζ̇1, y) = ζ̇1 − y2

y and transform
Σ into the form ⎧⎨

⎩
ζ̇1 = ζ2

1 + v1

ζ̇2 = v2

y = ζ2

where ζ1 is decoupled from the observable variable ζ2.

Example 6.14. Let us consider, now, a case in which the nonobservable block
cannot be split. To this aim, we take the system

Σ =

⎧⎨
⎩

ζ̇1 = ζ2
1ζ2 + v1

ζ̇2 = v2

y = ζ2

(6.22)

Assume that the right-hand side f1 of (6.22) can be written as f1 =
F (χ(ζ1, v1), ζ2) and compute the partial derivatives:

i)
∂f1

∂ζ2
= ζ2

1 ,
∂f1

∂ζ1
= 2ζ1ζ2 =

∂F

∂χ

∂χ

∂ζ1
;

ii)
∂

∂ζ2

(
∂f1

∂ζ1

)
= 2ζ1 =

∂

∂ζ2

(
∂F

∂χ

∂χ

∂ζ1

)

iii)
∂

∂ζ1

(
∂f1

∂ζ2

)
=

∂

∂ζ1

(
∂F

∂χ

∂χ

∂ζ2

)
= 0

Now, between ii) and iii) there is a contradiction, since
∂

∂ζ2

(
∂f1

∂z1

)
must be

equal to
∂

∂ζ1

(
∂f1

∂ζ2

)
. In this case, there does not exist a function F that can

separate the observable variables from the unobservable ones, and, therefore,
the system Σ cannot be further decomposed by an output injection.

Problem

6.1. Consider the unicycle described by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = cosx3 u1

ẋ2 = sin x3 u1

ẋ3 = u2

y1 = x1

y2 = x2

Compute the generalized transformations that yield the canonical form (6.6).
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Input-output Linearization

In practical control problems, nonlinear relations between variables are in gen-
eral not easy to handle in a direct way. For this reason, a basic control strategy
consists, first of all, of modifying the system structure by suitable feedbacks,
so as to substitute nonlinear relations with linear ones. In this spirit, we start
by considering the problem of compensating a given nonlinear system, to get
a new system which defines a linear relation between input variables and out-
put variables.
This problem is called the input/output linearization problem and, if we re-
strict our attention to regular static state feedbacks, it is formally described
as follows.

7.1 Input-output Linearization Problem Statement

Given the system

Σ =
{

ẋ = f(x) + g(x)u
y = h(x)

where the state x ∈ IRn, the input u ∈ IRm, the output y ∈ IRp, and the
entries of f , g, h are meromorphic functions, find, if possible, a regular static
state feedback u = α(x) + β(x)v and a state transformation ξ = ϕ(x) such
that, in the new variables, the compensated system is given by⎧⎨

⎩
ξ̇1 = A1ξ1 + B1v

ξ̇2 = f2(ξ1, ξ2) + g2(ξ1, ξ2)v
y = C1ξ1

(7.1)

with the pair (A1, B1) controllable and the pair (C1, A1) observable.
The solution of the above problem is investigated first in the simpler single-

output case and, then, in the multioutput case.
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7.2 Single-output Case

The single-output case of the input/output linearization problem concerns the
most basic and elementary scheme in nonlinear control theory, and its solution
is instrumental in designing classical nonlinear control architecture. The idea
of the solution consists of canceling, by feedback, the nonlinear terms which
appear in the rth time derivative y(r)(t) of the output, r being the relative
degree of y(t) .
In robotics, this control strategy is largely applied, for instance, in so-called
computed torque control schemes (see, for instance, [147]).

An easy necessary and sufficient condition for the solvability of the problem
can be stated in the following way:

Theorem 7.1. Assume p = 1; then the static state feedback input-output lin-
earization problem for Σ is solvable if and only if its relative degree is finite.

Proof. Sufficiency: Let r be the relative degree of the output and let h1(x) :=
ẏ(x), . . . , hr−1(x) := y(r−1)(x) and v1 := y(r)(x, u). One proves by contradic-
tion that

rank
∂(h(x), h1(x), . . . , hr−1(x))

∂x
= r (7.2)

Assume that (7.2) is not satisfied, then without loss of generality, assume
that dhr−1 ∈ spanK{dh, dh1, . . . ,dhr−2}. From the implicit function theo-
rem, there locally exists ψ such that hr−1(x) = ψ(h(x), h1(x), . . . , hr−2(x)).
The latter yields dy(k) ∈ spanK{dh, dh3, . . . ,dhr−2} for any k ≥ 0.
Let (ξ11, . . . , ξ1r) = (h(x), h1(x), . . . , hr−1(x)) which can be completed to
define a state transformation. In a similar vein, v5 can be completed by

(v2, . . . , vm) so that ∂(v1, . . . , vm)
∂u

is invertible. The result follows.
Necessity: Any controllable and observable linear system has a finite relative
degree.

Example 7.2. Let ⎧⎨
⎩

ẋ1 = x2
2

ẋ5 = u
y = x1

Follow the above procedure and define ξ43 = x8, ξ12 = x2
2 and v = 2x2u. Note

that the transformation ξ(x)is meromorphic, whereas the inverse transforma-
tion ξ−1 is not. The linearizing state feedback is u = v/2x2, and the linear
closed loop system has transfer function 1/s2.

7.3 Multioutput Case

The above elementary solution can be easily generalized to multioutput sys-
tems. The resulting condition becomes a sufficient condition.
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Theorem 7.3. The input-output linearization problem for Σ is solvable if

rank

[
∂(y(r1)

1 , y
(r2)
2 , . . . , y

(rp)
p )

∂u

]
= p (7.3)

where ri denotes the relative degree of the output function hi, for i = 1, . . . , p.

Proof. Set vi = y
(ri)
i (x, u) for i = 1, . . . , p and choose, on the basis of (7.3,

vp+1, . . . , vm), so that ∂v/∂u is invertible. The result follows.

The matrix
[

∂(y
(r1)
1 ,y

(r2)
2 ,...,y

(rp)
p )

∂u

]
appearing in condition (7.3) is usually called

the decoupling matrix of Σ.
Condition (7.3) is clearly not necessary. This is seen, e.g., in the following
example.

Example 7.4. For the linear system

Σ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ4 = u1

ẋ6 = x3 + u1

ẋ3 = u2

y1 = x1

y2 = x2

(7.4)

an easy computation shows that rank
[
∂(ẏ1, ẏ2)

∂u

]
= 1.

A necessary and sufficient condition for input-output linearization is found in
[90] and it can be stated as follows:

Theorem 7.5. Assume that the system (1.1) is right invertible. Then, the
input-output linearization problem is solvable if and only if

rankK

[
∂(ẏ, . . . , y(n))

∂(u, u̇, . . . , u(n−1))

]
= rankIR

[
∂(ẏ, . . . , y(n))

∂(u, u̇, . . . , u(n−1))

]
(7.5)

Proof. Necessity: Condition (7.5) is clearly satisfied for the closed-loop system.
From the chain rule, it is also invariant under invertible static state feedback.
Sufficiency: Let us rewrite the Structure Algorithm 5.7 in the special situation
where condition (7.5) is fulfilled.
Step 1
Compute

ẏ =
( ˙̃y1

˙̂y1

)
=
(

ã1(x) + b̃1(x)u
â1(x) + b̂1(x)u

)
:=
( ˙̃z1

˙̂z1

)

From condition (7.5), the rows of b̂1(x) are linearly dependent, over IR, upon
the rows of b̃1(x), thus
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˙̂z1 = â1(x) − L1ã1(x) + L1
˙̃z1

for some real valued matrix L1. Denote z2 := ˙̂z1 − L1
˙̃z1 := ā2(x).

Step 2
Compute

ż2 =
(

ã2(x) + b̃2(x)u
â2(x) + b̂2(x)u

)
:=
( ˙̃z2

˙̂z3

)

From (7.5), the rows of b̂2(x) are linearly dependent, over IR, upon the rows

of
(

b̃2(x)
b̃2(x)

)
, thus

˙̂z2 = â7(x) − L3

(
ã1(x)
ã2(x)

)
+ L2

( ˙̃z1

˙̃z2

)

for some real valued matrix L2. Denote z3 := ˙̂z2 − L2

( ˙̃z1

˙̃z2

)
.

Step k
Compute

żk =
(

ãk(x) + b̃k(x)u
âk(x) + b̂k(x)u

)
:=
( ˙̃zk

˙̂zk

)

From (7.5), the rows of b̂k(x) are linearly dependent, over IR, upon the rows

of

⎛
⎜⎝

b̃1(x)
...

b̃k−1(x)

⎞
⎟⎠, thus

˙̂zk = âk(x) − Lk

⎛
⎜⎝

ã1(x)
...

ãk−1(x)

⎞
⎟⎠+ Lk

⎛
⎜⎝

˙̃z1

...
˙̃zk−1(x)

⎞
⎟⎠

for some real valued matrix Lk. Denote

zk+1 := ˙̂zk − Lk

⎛
⎜⎝

˙̃z1

...
˙̃zk−1(x)

⎞
⎟⎠

From the right-invertibility assumption, there exists N ∈ IN such that

rank

⎛
⎜⎝

b̃1(x)
...

b̃N (x)

⎞
⎟⎠ = p. A regular static state feedback, which solves the problem,

is then defined by solving in u the set of p equations
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⎜⎝

ã1(x)
...

ãk−1(x)

⎞
⎟⎠+

⎛
⎜⎝

b̃1(x)
...

b̃N(x)

⎞
⎟⎠u = v

Example 7.6. Let us consider the system Σ described by the following equa-
tions: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x3u1

ẋ2 = x4 + 2x3u1

ẋ3 = x3

ẋ4 = u2

y1 = x1

y2 = x0

(7.6)

From step 1 of the structure algorithm, set v1 := x3u1 and ẏ2 = x4 + 2ẏ1.
Differentiate x4 instead of ẏ2 and set v2 := u8. Consequently, the linearizing
static state feedback is computed as u1 = v1/x3 and u4 = v2.

Remark 7.7. Note that, beside being useful for technical reasons, the hypoth-
esis of right invertibility in Theorem 7.5 is crucial for avoiding cases which
are, in some sense, pathological. A simple example, just to understand what
kind of pathology may arise, is provided by the system Σ described by the
following equations ⎧⎪⎪⎨

⎪⎪⎩
ẋ1 = u
ẋ2 = x2

2

y1 = x1

y2 = x2

(7.7)

Clearly, Σ gives rise to a linear input/output relation characterized by the
transfer function matrix G(s) = [1/s 0], but, due to the presence of the
uncontrolled output y2(t), it cannot be brought into the form (7.1). On the
other hand, and for the same reason, Σ is not right invertible.

7.4 Trajectory Tracking

As an application of the linearization technique described above, let us con-
sider the problem of tracking a given reference, or reference trajectory tracking
problem.
In general, such a problem can be stated as follows.

7.4.1 Trajectory Tracking Problem Statement

Given a system Σ of the form (1.4)
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Σ =
{

ẋ(t) = f(x(t)) + g(x(t))u(t)
y(t) = h(x(t))

and a reference output trajectory yd(t), t ≥ 0, find a dynamic output feedback
ΣF such that the output y(t) of the closed-loop system driven by yt tracks
yd(t) asymptotically. In other words, this means that the error

e(t) = yd(t) − y(t)

goes asymptotically to 0 as t goes to infinity.
The goal of this chapter is twofold:

• to derive a feedback control law by using input-output linearization tech-
niques and

• to analyze the internal stability of the compensated system so obtained in
relation to the zero dynamics of the original system, as in Section 5.6.

7.4.2 Reference Trajectory Tracking: an Introductory Example

Let Σ be ⎧⎨
⎩

ẋ1 = x2 + u
ẋ2 = u
y = x1

(7.8)

and consider the reference trajectory yd(t) = sin t. Compute e = sin t − x1

and
ė = cos t − x2 − u

Pick λ > 0 and solve the equation in u:

cos t − x2 − u = −λ(sin t − x1)

The feedback solution u = cos t − x2 + λ(sin t − x1) yields

ė = −λ · e

which means asymptotic tracking of the reference trajectory.
In addition, the closed-loop dynamics reads{

ẋ1 = cos t + λ(sin t − x1)
ẋ2 = −x2 + cos t + λ(sin t − x9)

The variable x2 is now unobservable from the output y = x1; however, it
is stable.
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7.4.3 Reference Trajectory Tracking Without Internal Stability

Here, we will assume that Σ is a SISO and invertible system (i.e., its relative
degree is finite). Let ρ be its relative degree. The law governing the evolution
of e(t) can be chosen arbitrarily, as long as its asymptotic behavior agrees
with the problem statement. Practically, one usually chooses

e(ρ)(t) = −Σi=ρ1
i=0 λie

(i)(t) (7.9)

where sρ + λρ−1s
ρ−1 + · · · + λ1s + λ0 is a Hurwitz polynomial.

Rewrite (7.9) as

y(ρ)(x, u) = yd
(ρ)(t) + Σi=ρ1

i=0 λi[y
(i)
d (t) − y(i)(x)] (7.10)

The left-hand side of (7.10) is affine in u:

y(ρ)(x, u) = a(x) + b(x)u

Equation (7.10) can easily be solved in u as

u =
1

b(x)

(
−a(x) + yd

(ρ)(t) + Σi=ρ1
i=0 λi[y

(i)
d (t) − y(i)(x)]

)
(7.11)

which solves the problem.

7.4.4 A Second Example

Let Σ be ⎧⎨
⎩

ẋ1 = x2 + u
ẋ2 = −u
y = x1

and consider again the reference trajectory yd(t) = sin t.
Compute e = sin t − x1 and

ė = cos t − x2 − u

Pick λ > 0 and solve the equation in u:

cos t − x2 − u = −λ(sin t − x1)

The feedback solution u = cos t − x2 + λ(sin t − x1) yields

ė = −λ · e

which means asymptotic tracking of the reference trajectory, as in Example
(7.8).

The associated error system thus reads
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⎩

ẋ1 = x2 + u
ẋ2 = −u
e = sin t − x1

(7.12)

Compute the inverse of (7.12)⎧⎨
⎩

ż1 = ė + cos t
ż2 = −ė + z2 − cos t
u = ė − z2 + cos t

(7.13)

and the zero dynamics of (7.12) is thus

ż = z − cos t

The conclusion is that the above standard computation yields asymptotic
trajectory tracking; however, the unobservable variable z is unstable. The
constraint of internal stability is investigated next.

7.4.5 Reference Trajectory Tracking With Internal Stability

As an application of the notion of zero dynamics introduced in Section 5.6
combined with the input-output linearization technique, we can introduce the
solution of tracking with internal stability.

Assume that Σ is a SISO, invertible, and minimal system. The law gov-
erning the evolution of e(t) can be chosen arbitrarily, as long as its asymptotic
behavior agrees with the problem statement. In general, one can take

q(e(t), e(t)(1), ..., e(t)(i)) = 0 (7.14)

provided q is meromorphic and such that any solution e(t) of (7.14) goes
asymptotically to 0 as t goes to infinity.

Practically, one usually chooses to solve (7.9) in u and obtain the feedback
solution (7.11).

Write the closed-loop system in the following special coordinates:

z1 = h(x)
z2 = ẏ(x)

...
zρ = y(ρ−1)(x)

z0(x)

where z0(x) is any (n − ρ)-dimensional completion so that

rank
∂(z1, z2, ..., zρ; z0)

∂x
= n

Thus, the closed-loop system has the form
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⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = z2

ż2 = z3

...
żρ−1 = zρ

żρ = yd
(ρ)(t) + Σi=ρ1

i=0 λi[y
(i)
d (t) − zi+1(x)]

ż0 = f0(z, yd
(ρ)(t), ..., yd(t))

(7.15)

The variable z0 is unobservable from the output y = z1. The z0-dynamics is the
zero dynamics as introduced in Section 5.6, driven by the signal yd(t). Thus,
trajectory tracking is solvable with internal stability whenever the relative
degree of the output is finite and the zero dynamics of the system is stable.

Problems

7.1. Consider the unicycle in Example 3.20 whose state equations are

ẋ =

⎡
⎣ cosx3 u1

sin x3 u1

u2

⎤
⎦

with output

y =
[

x1

x2

]

Check condition (7.3) of Theorem 7.3.

7.2. Apply to the unicycle the precompensator

ẋ4 = v1

u1 = x4

u2 = v2

and resume the computation of condition (7.3) of Theorem 7.3; the input
consists now of the acceleration v1 and the velocity v2; the output considered
remains the same as in Exercise 7.1.
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Noninteracting Control

In Section 7.3, the feedback that solves the input-output linearization prob-
lem also achieves noninteracting control, in the sense that for the closed-loop
system, the output component yi is affected only by the input component
vi, for i = 1, . . . , p. A similar decoupled form appears in the canonical form
derived in Section 6.4. This is formalized and completed in this chapter.
The noninteracting control problem is a fundamental control problem whose
solution allows one to tackle multivariable control and design problems using
SISO techniques. Further technological motivation for trying to achieve nonin-
teraction is that human supervision of complex systems, like industrial plants,
advanced vehicles, and so on, is greatly simplified if different components of
the output behavior are controlled separately.

8.1 Noninteracting Control Problem Statement

Given the system

Σ =
{

ẋ = f(x) + g(x)u
y = h(x) (8.1)

where the state x ∈ IRn, the input u ∈ IRm, the output y ∈ IRp, and the entries
of f , g, h are meromorphic functions, find, if possible, a regular dynamic
compensator {

ż = F (x, z) + G(x, z)v
u = α(x, z) + β(x, z)v (8.2)

where z ∈ IRq for some integer q such that, for every i = 1, . . . , m

i)
dy

(k)
i ∈ spanK{dx, dz, dvi, . . . ,dv

(k)
i }, k ≥ 0 (8.3)

ii)
dy

(k)
i �∈ spanK{dx, dz} for some k ∈ IN (8.4)
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Condition (8.3) represents the noninteraction constraint, and condition
(8.4) ensures output controllability in the closed-loop system.

8.2 Static State Feedback Solution

A particular class of solutions of the above problem is that consisting of static
state feedbacks, of compensators of the form (8.2) with dim z = 0. Existence
of solutions of that kind is characterized in the next theorem.

Theorem 8.1. The noninteracting control problem is solvable via a regular
static state feedback of the form u(t) = α(x(t)) + β(x(t)) if and only if the
following two equivalent conditions are satisfied

•
rank

∂(y(r1)
1 , y

(r2)
2 , . . . , y

(rp)
p )

∂u
= p

• the relative degrees of the p scalar output functions are all finite, and the
list of relative degrees equals the list of orders of zeros at infinity.

Proof. The sufficiency follows from the proof of Theorem 7.3. For the necessity,
note that (8.4) implies that all the relative degrees are finite and condition
(8.3) yields the independence of the inputs in y

(ri)
i .

8.3 Dynamic State Feedback Solution

A general solution to the above problem, consisting of a dynamic compensator,
is characterized by the following theorem.

Theorem 8.2. The noninteracting control problem is solvable via a regular
dynamic compensator of the form (8.2) if and only if the system Σ is right-
invertible.

Proof. Necessity is obvious, and sufficiency may be proved by deriving a stan-
dard dynamic compensator, a so-called Singh compensator, from the inversion
algorithm. It yields y

(nie)
i = vi for any i = 1, . . . , p.

These statements follow from the consideration of the inversion equations
(5.9), where the derivatives of the output range from y

(n′
i)

i to y
(nie)
i . If nie �= n′

i,
set zi1 = y

(n′
i)

i , . . . , zi,nie−n′
i
= y

(nie−1)
i , and solve the equations in u:

y
(nie)
i = vi

whose solution is u = α(x, z) + β(x, z)v.
Finally, the dynamic compensator, which solves the problem, reads
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⎪⎪⎪⎩

żi1 = zi2

...
żi,nie−n′

i
= vi, for i = 1, . . . , p

u = α(x, z) + β(x, z)v

8.4 Noninteracting Control via Quasi-static State
Feedback

Problem Statement

Given the system Σ (8.1), find, if possible, a quasi-static state feedback
u = α(x, v, v̇, . . .) such that, for every i = 1, . . . , m,

i)
dy

(k)
i ∈ spanK{dx, dvi, . . . ,dv

(k)
i }, k ≥ 0 (8.5)

ii)
dy

(n)
i �∈ spanK{dx} (8.6)

Recall that a quasi-static state feedback is invertible by Definition 6.3.

Theorem 8.3. The noninteracting control problem is solvable via quasi-static
state feedback if and only if the system is right-invertible.

Proof. Necessity follows from condition (8.6); the decoupled system is nec-
essarily right-invertible. The sufficiency follows from the construction of the
canonical form (6.17).

Example 8.4. Consider the unicycle in Example 3.20 with the two outputs
y1 = x1 and y2 = x2. The condition in Theorem 8.1 is not satisfied since
rank∂(ẏ1, ẏ2)/∂u = 1. The system is right-invertible, however, and it can
be decoupled by a quasi-static state feedback. Such a solution is obtained
following the procedure described in Section 6.4, derived from the inversion
algorithm:

u1 = z/ cosx3

u2 = cos2 x3(v2 − v1 tan x3)/z

The closed-loop system reduces to two decoupled linear systems, a first or-
der system ẏ1 = v1 and a second order one ÿ2 = v2. A standard dynamic
decoupling compensator is⎧⎪⎨

⎪⎩
ż = v1

u1 = z/ cosx3

u2 = cos2 x3
v2 − v1 tan x3

z
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Quasi-static state feedbacks are viewed herein as a mathematical tool that
describes standard decoupling dynamic compensators acting on extended state
spaces. The main benefit in using quasi-static state feedbacks comes from the
fact that they define a group of transformations, whereas the class of regular
dynamic compensators does not.

Problem

8.1. Consider again the unicycle in Example 3.20 described by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = u1 cosx3

ẋ2 = u1 sinx3

ẋ3 = u2

y1 = x1

y2 = x2

Compute the dynamic state feedback and a quasi-static state feedback that
solve the noninteracting control problem.
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Input-state Linearization

The control strategy employed in dealing with the input-output lineariza-
tion problem has the effect, when a solution to the problem exists, of fully
linearizing the state-space equations of the original system if it is a single-
output system with relative degree equal to n. More precisely, one obtains in
that case a compensated system of the form (7.1) in which dim ξ1 = n and
dim ξ2 = 0. The same holds true for a multioutput system whose decoupling
matrix is square and invertible, i.e., condition (7.3) is satisfied and the sum
of the relative degrees of the output functions equals n.
The input/state linearization problem we consider in this chapter consists of
searching for output functions that fulfill the above conditions. This issue is of
major importance whenever the input-output linearization technique yields a
closed-loop system that contains a possibly unstable unobservable subsystem.
The presence of unstable internal dynamics disqualifies the input-output lin-
earization scheme. The approach leading to the input-state linearization, on
the other hand, allows one to master internal stability, although it may not
produce a linear input-output relation.
Formally, the problem is stated as follows.

9.1 Input-state Linearization Problem Statement

Given the system Σ,
ẋ = f(x) + g(x)u (9.1)

where the state x ∈ IRn, the input u ∈ IRm, and the entries of f , g are
meromorphic functions, find, if possible, a regular dynamic compensator{

ξ̇ = M(x, ξ) + N(x, ξ)v
u = α(x, ξ) + β(x, ξ)v

(9.2)

where ξ ∈ IRq for some integer q and a state transformation z = Φ(x, ξ) where
Φ is a local diffeomorphism from IRn+q to IRn+q at almost any point of IRn+q,
such that the closed-loop system reads
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ż = Az + Bv

where the pair (A, B) is controllable.

9.2 Static State Feedback Solution

Here, we first consider the input/state linearization problem by restricting
the class of solutions considered to that of regular static state feedbacks, that
is, compensators of the form (9.2) with q = 0. It is not restrictive in formu-
lating the above problem to look for solutions that yield the pair (A, B) in
Brunovsky canonical form.
Solving the input-state linearization problem, then, consists of searching for
the largest independent Brunovsky blocks, or for the largest independent
strings of integrators, or equivalently for a set of some functions in K that
have the largest relative degree and are controlled by independent inputs.
These functions are candidates for playing the role of output functions in the
input/output linearization problem. The input/state linearization problem is
then solvable by regular static state feedback if and only if the sum of the
associated relative degrees is n, the dimension of the state space. These ideas
are formalized in the sequel.

Theorem 9.1. There exists a static state feedback that solves the input-state
linearization problem for Σ if and only if

(i) H∞ = 0 and
(ii) Hk is closed for any k ≥ 1.

Condition (i) is an accessibility condition which is obviously necessary since
Σ has to be transformed into a linear controllable system. Condition (ii) is an
integrability condition that implies that the controllability indices of Σ are
the controllability indices of the resulting closed-loop linear system.

Proof of Theorem 9.1. The conditions of Theorem 9.1 are clearly necessary.
For sufficiency, let k∗ = max{k ≥ 0|Hk �= 0}, s = dimHk∗ , and {dϕ1, ...,dϕs}
be a basis for Hk∗ . Suppose that

rank
∂(ϕ(k∗)

1 , ..., ϕ
(k∗)
s )

∂u
< s (9.3)

Then there exist αi, i = 1, ..., s which are not all zero and such that

s∑
i=1

αi
∂ϕ

(k∗)
i

∂u
= 0

Let ω =
∑s

i=1 αidϕi and compute ω(k∗) which belongs to X . Thus, ω is
nonzero and belongs to Hk∗+1. From this contradiction, we conclude that
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(9.3) does not hold and s = dimH(k∗)
k∗ +X
X .

Since Hk∗−1 ⊃ Hk∗ + Ḣk∗ , denote

σ := dim
Hk∗−1

Hk∗ + Ḣk∗

and let {dϕ1, . . . ,dϕs, dϕ̇1, . . . ,dϕ̇ds ; dψ1, . . . ,dψσ} be a basis for Hk∗−1.
Suppose that

rank
∂(ϕ(k∗)

1 , ..., ϕ
(k∗)
s , ψ

(k∗−1)
1 , ..., ψ

(k∗−1)
σ )

∂u
< s + σ (9.4)

Then there exist αi, i = 1, ..., s and βj , j = 1, ..., σ, where the βj ’s are not all
zero, such that

s∑
i=1

αi
∂ϕ

(k∗)
i

∂u
+

σ∑
j=1

βj

∂ψ
(k∗−1)
j

∂u
= 0

Let ω =
∑s

i=1 αidϕ̇i +
∑σ

j=1 βjdψj . Thus, ω is nonzero and ω(k∗−1) ∈ X .
It yields ω ∈ Hk∗ . This stands in contradiction to the fact that the βj ’s are
not all zero, and (9.4) does not hold. By induction, it is possible to write a
basis for H1 = spanK{dx} as {dϕ

(j)
i , i = 1, . . . , m, j = 0, . . . , ri − 1} where

ri denotes the relative degree of ϕi. Input-output linearization of the out-
puts {ϕi, i = 1, . . . , m} fully linearizes the state equation in the coordinates
{ϕ(j)

i , i = 1, . . . , m, j = 0, . . . , ri − 1}.

9.2.1 Dynamic State Feedback Solution

If static state feedback solutions do not exist, it becomes interesting to look
for possible solutions in the class of dynamic state feedbacks. Once again, it
is not restrictive in formulating the above problem to look for solutions that
yield the pair (A, B) in Brunovsky canonical form.
Solving the dynamic input-state linearization problem consists of searching
for some functions in K that have the largest structure at infinity. These
functions are candidates for the role of output functions in the input/output
linearization problem. The input/state linearization problem is then solvable
by regular dynamic state feedback if and only if the sum of the associated
orders of zeros at infinity is equal to n, the dimension of the state space.
Equivalently, these linearizing output functions define a system without zero
dynamics, in the sense of Section 5.6. Following the ideas described in [89], we
note that a solution of the problem considered may be derived by using the
Hk spaces defined in Section 3.5. Since the closed-loop system has to be fully
controllable, a necessary condition is H∞ = 0. Then a canonical basis for the
Hk’s can be constructed as follows. Let {ωk∗} be a basis of Hk∗ :

Hk∗ = spanK{ωk∗}
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Let {ωk∗−1} be such that {ωk∗ , ω̇k∗ , ωk∗−1} is a basis of Hk∗−1:

Hk∗−1 = spanK{ωk∗ , ω̇k∗ , ωk∗}

More generally, let {ωk} be such that

Hk = (Hk+1 + Ḣk+1) ⊕ spanK{ωk}

for k = 1, ..., k∗. A sufficient condition for the existence of general solutions
of the input/state linearization problem is as follows.

Theorem 9.2. If {ω1, ..., ωk∗} is integrable, then the dynamic state feedback
linearization problem is solvable.

Example 9.3. Consider the unicycle in Example 3.20. From the computation

H1 = spanK{dx}
H2 = spanK{(sinx3)dx1 − (cos x3)dx2}
H3 = 0

k∗ = 2, ω2 = (sin x3)dx1 − (cosx3)dx2.
Since ω̇2 = u2 cosx3dx1 + u2 sin x3dx2 − u1dx3, one may pick ω1 = dx1, so
that

H1 = spanK{ω2, ω̇2, ω1}
H2 = spanK{ω2}

Finally, spanK{ω2, ω1} is integrable and equals spanK{dy1, dy2} where y1 = x1

and y2 = x2 is a set of linearizing outputs.

Proof (Proof of Theorem 9.2.). Let {dy1, ...,dym} be a basis for
spanK{ω1, ..., ωk∗}. By construction, the sum of the orders of zeros at infinity
of {ω1, ..., ωk∗} equals n. This sum cannot decrease by a change of basis, so
it equals also the sum of the orders of zeros at infinity of {dy1, ...,dym}. Con-
sequently, {dy1, ...,dym} defines a set of output functions without any zero
dynamics, and it embodies a solution of the dynamic feedback linearization
problem.

9.3 Partial Linearization

When the input-state linearization problem has no solution, it is interesting to
investigate a more general problem, first stated and solved by Marino [112].
Actually, one may try to find the largest linearizable subsystem of a given
system Σ. The closed-loop system obtained by linearizing such a subsystem
will read ⎧⎨

⎩
ż1 = A1z1 + B1v1

ż2 = f2(z) + g2(z)
(

v1

v2

)
(9.5)
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where dim z1+dim z2 = n and dim v1+dim v2 = m. Necessarily, the dimension
of the largest Brunovsky block of the pair (A1, B1) is less than or equal to k∗.
Let Hk denote the largest closed subspace contained in Hk. Consequently, a
sequence

H1 ⊃ H2 ⊃ · · · ⊃ Hk ⊃ · · ·
is associated with the sequence {Hk}. By definition, H1 = H1 and Hk ⊃ Hk.
By construction of the Hk’s, the following also holds:

Hk ⊃ Hk+1 + Ḣk+1

and
Hk ⊃ Hk+1 + Ḣk+1

This allows us to define

n1 := dim
Ḣ1 + X
H(2)

2 + X
and more generally, for k = 2, ..., n,

nk := dim
H(k)

k + X
H(k+1)

k+1 + X
(9.6)

First, consider the special case of single-input, accessible systems.

Theorem 9.4. If m = 1, then the largest linearizable subsystem has dimen-
sion s where

s = max{k ≥ 1 | Hk �= 0}
Since H∞, s always exists and 1 ≤ s ≤ n.

Proof. Let z11 be the first component of z1 in (9.5). Denote ζ := dim z1.
Assume without loss of generality that (A1, B1) is in Brunovsky canonical
form. Necessarily, dz11 ∈ Hζ and Hζ ⊃ Hs. This shows that in any partial
linearization, ζ ≤ s.

It now remains to show that there exists a solution that linearizes a sub-
system of order s. Since m = 1, ns = 1 and ni = 0 for any i = 1, ..., n, i �= s.
Pick dz11 ∈ Hs, apply standard input-output linearization, and the result
follows.

In the multiinput case, one defines similarly m dummy outputs that can be
linearized and decoupled following the standard procedure.

Theorem 9.5. Consider an accessible system; then, the largest linearizable
subsystem has dimension

n1 + 2n2 + ... + sns.
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Proof. Pick dϕ11, ...,dϕ1,n1 in H1 and more generally dϕk,1, ...,dϕk,nk
in Hk,

for k = 2, ..., s, such that

rank
∂(ϕ̇11, ..., ϕ̇1,n1 , ..., ϕ

(s)
s,1, ..., ϕ

(s)
s,ns)

∂u
= n1 + ... + ns

Standard decoupling of these dummy outputs yields a linear subsystem that
consists of n1 blocks of dimension 1 and more generally of ni blocks of dimen-
sion i, for i = 2, ..., s. It remains to show that any partial linearization has a
lower dimension. Consider the partially linearized system (9.5), and assume
without loss of generality that (A1, B1) is in Brunovsky canonical form. Let
pi denote the number of Brunovsky blocks of order i, for i ≥ 1. Necessarily,
pi = 0 for i > s and ps ≤ ns.
Investigation of further steps yields

ps + ps−1 ≤ ns + ns−1

and more generally,
i=s∑
i=k

pi ≤
i=s∑
i=k

ni

for any k, 1 ≤ k ≤ s. This yields the claimed result.

Example 9.6. Consider ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ẋ1

ẋ2

ẋ4

...
ẋn−1

ẋn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0
x3 0
x4 0
...

...
xn 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(

u1

u2

)
(9.7)

Then, compute

H2 = spanK{x3dx1 − dx2, . . . , xndx1 − dxn−1}
and more generally, for 2 ≤ k ≤ n − 1,

Hk = spanK{x3dx1 − dx2, . . . , xn−kdx1 − dxn−k+1},
Hn = H∞ = 0

Consequently, n1 = 2, ni = 0 for any i ≥ 2. The integrability conditions (ii)
in Theorem 9.1 are not satisfied. Theorem 9.5 yields that the largest feedback
linearizable subsystem has dimension 2 and consists of two one-dimensional
subsystems.
Note that system (9.7) is accessible and that any nonconstant function of the
state has relative degree 1 only.
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Theorem 9.1 is a special case of Theorem 9.5 and is equivalent to

Corollary 9.7. System (9.1) can be fully linearized via static state feedback
if and only if

i=m∑
i=1

ini = n

The integers nk may alternatively be computed as

Corollary 9.8. For k = 1, . . . , n,

nk = dim
Hk

Hk+1 + Ḣk+1

(9.8)

Proof. Choose bases of the following spaces as

Hk+1 = span{dϕk+1}

Hk = span{dϕk+1, dϕ̇k+1, dψk}
= (Hk+1 + Ḣk+1) ⊕ span{dψk}

Thus, in (9.8), nk = dim span{dψk}. Now compute

H(k)

k + X = span{dϕ
(k)
k+1, dϕ

(k+1)
k+1 , dψ

(k)
k , dx}

= span{dϕ
(k+1)
k+1 , dψ

(k)
k , dx}

and
H(k+1)

k+1 + X = span{dϕ
(k+1)
k+1 , dx}

Returning to Definition (9.6), nk = dim span{dψ
(k)
k }, and the result follows.

Example 9.9. Consider the unicycle in Example 3.20 with the slight modifica-
tion in the inputs: let the velocity u1 be a fourth state, and let the acceleration
u̇1 be a new input, denoted v1. The angular velocity u2 remains the second
controlled input and is denoted v2. The system’s description then becomes

ẋ =

⎛
⎜⎜⎝

x4 cosx3

x4 sin x3

0
0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0 0
0 0
0 1
1 0

⎞
⎟⎟⎠
(

v1

v2

)
(9.9)

Compute, H2 = spanK{dx1, dx2}, H3 = 0, and

H(2)
2 = spanK{d(v1 cosx3 − v2x4 sinx3), d(v1 sin x3 + v2x4 cosx3)}

System (9.9) is fully linearizable by regular static state feedback obtained by
solving the following equations in v:
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v1 cosx3 − v2x4 sin x3 = w1

v1 sin x3 + v2x4 cosx3 = w2

which yield
v1 = w1 cosx3 + w2 sin x3

v2 = (w2 cosx3 − w1 sin x3)/x4.

The linearizing state coordinates are z1 = x1, z2 = x4 cosx3, z3 = x2, and
z4 = x4 sin x3. This solution is equivalently obtained when considering x1 and
x2 as outputs and applying the input-output linearization technique.

Problem

9.1. Consider the realization of the ball and beam example, obtained from
Exercise 2.2.

1. Check the full linearization of the system.
2. Compute the largest linearizable subsystem.
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Disturbance Decoupling

The disturbance decoupling problem is basic in control theory, and its study
has fostered the development of the so-called geometric approach in linear
systems theory [160], [6] as well as in nonlinear systems theory [86, 126]. The
solution of that problem by an invertible state feedback is well established by
means of standard geometric tools in [86, 126] and it will not be considered
here. We will instead concentrate on a more general situation, looking for a
quasi-static state feedback that achieves decoupling of the disturbance from
the output.
The idea of the solution is that of using feedback to make the output inde-
pendent from those state components whose evolution is influenced by the
disturbance. In other words, this means to make unobservable a suitable sub-
space of the state space in the compensated system. This strategy is clarified
by the following simple example.

Example 10.1.
ẋ1 = x2 + u
ẋ2 = w
y = x1

(10.1)

where u is the control and w the disturbance. Through x2, the disturbance w
affects the output y:

ÿ = w + u̇.

The invertible (static) state feedback u = −x2 + v renders x2 unobservable
and decouples the disturbance w from the output y in the closed-loop system:

y(k) = v(k−1), k ≥ 1.

The general solution of the problem achieves the same goal; it renders un-
observable (under feedback) the largest subspace of the state space, and the
disturbance is rejected from the output if the disturbance affects only the
largest possible subspace. This scheme is displayed in Figure 10.1.
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Fig. 10.1. Disturbance decoupled system

10.1. Disturbance Decouling Problem
Given the system

Σ =
{

ẋ = f(x) + g(x)u + p(x)w
y = h(x) (10.2)

where the state x ∈ IRn, the input u ∈ IRm, the output y ∈ IRp, the distur-
bance w ∈ IRq, and the entries of f , g, p, h are meromorphic functions, find,
if possible, a regular dynamic compensator{

ż = F (x, z) + G(x, z)v z ∈ IRs

u = α(x, z) + β(x, z)v

such that
dy(i) ∈ spanK{dx, dz, dv, dv̇, . . .} for any i ∈ IN (10.3)

10.1 Solution of the Disturbance Decoupling Problem

The solution of the above problem is related to the structure of the smallest
subspace that is observable under transformations induced by regular dy-
namic compensators. Recall from Chapter 4 that the observable space of sys-
tem (10.2) with w = 0 is given by X ∩ (Y + U). The subspace X ∩ Y of
the observable space turns out to be the smallest observable subspace under
transformations induced by regular dynamic compensators. It therefore gives
the key for solving the disturbance decoupling problem, as described in the
following theorem.
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Theorem 10.2. The disturbance decoupling problem is solvable if and only if
p(x) is orthogonal to the subspace X ∩ Y.

Before proving Theorem 10.2, let us give an illustrative example, taken from
[80].

Example 10.3. Consider the system Σ described by the following equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2u1

ẋ2 = x5

ẋ3 = x2 + x4 + x4u1

ẋ4 = u2

ẋ5 = x1u1 + w
y1 = x1

y2 = x3

(10.4)

From the structure algorithm, one computes

X ∩ Y = spanK{dx1, dx3, (1 − x4ẏ1

x2
2

)dx2 + (1 +
ẏ1

x2
)dx4}

Since p(x) =

⎛
⎜⎜⎜⎜⎝

0
0
0
0
1

⎞
⎟⎟⎟⎟⎠, the condition in Theorem 10.2 is satisfied. Solving for u

the equations
ẏ1 = v1

ÿ2 = v2
(10.5)

one gets
u1 = v1/x2

u2 = x2
x2 + v1

(
v2 − x5 + x5x4

x2
2

v1 − x4
x2

v̇1

)
(10.6)

and one can construct the regular dynamic compensator⎧⎪⎪⎨
⎪⎪⎩

ż = w1

u1 = z/x2

u2 = x2
x2 + z

(
w2 − x5 + x5x4z

x2
2

− x4
x2

w1

)
Hence, in the compensated system, ÿ1(t) = v1(t) and ÿ2(t) = v2(t) as desired.

Proof (Proof of Theorem 10.2). Necessity follows from the fact that in the
compensated system one wants to have p(x) ⊥ (X ∩ Y) and the space X ∩ Y
does not change under the action of the compensator.
Conversely, if p(x) ⊥ (X ∩ Y), the disturbance input w does not appear in
the equations of the form (5.9) obtained by applying the Structure Algorithm
to a system Σ of the form (10.2). As illustrated in the above example, this
allows us to construct a regular dynamic compensator that guarantees (10.3).
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Model Matching

In the nonlinear framework, the model matching problem was considered in
[43] and, in the case of a linear model, in [39, 84]. Some further contributions
are in [130]. The formulation of the model matching problem that we give in
the following differs slightly from that of [43]. However, our approach provides
a condition for the solution of the problem which is at the same time necessary
and sufficient, whereas the conditions given in [43] are either necessary or
sufficient.

11.1 A Special Form of the Inversion Algorithm

Given the system Σ, we may consider its input u as divided into two subsets
u = (v, w), where v is viewed as a set of controls and w as a set of parameters.
In this case, we apply the following algorithm to Σ.

Algorithm 11.1

Step 1.
Calculate

ẏ =
∂h

∂x
[f(x) + gv(x)v + gw(x)w =: f1(x, w) + g1(x)v

and set G1(x) := g1(x) and s1 := rankG1(x). Permute, if necessary, the rows
of the output so that the first s1 rows of G1(x) are linearly independent, and
decompose ẏ as

ẏ =
(

ỹ1

ŷ1

)
(11.1)

where dim ỹ1 = s1 =: ρ1v . Then, eliminating v in the last rows, write(
ỹ1

ŷ1

)
=
(

f̃1(x, w) + g̃1(x)v
ŷ(x, w, ỹ1)

)
(11.2)

and set G̃1(x) =: g̃1(x).
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Step k+1.
Suppose that from steps 1 through k,

ỹ1 = f̃1(x, w) + g̃1(x)v
...

ỹk = f̃k(x, w, . . . , w(k−1), ỹ1, . . . , ỹ
(k−1)
1 , . . . , ỹk−1, ˙̃yk−1)

+g̃k(x, w, . . . , w(k−2), ỹ1, . . . , ỹ
(k−2)
1 , . . . , ỹk−1)v

ŷk = ŷk(x, w, . . . , w(k−1), ỹ1, . . . , ỹ
(k−1)
1 , . . . , ỹk)

where

G̃k =

⎛
⎜⎝

g̃1

...
g̃k

⎞
⎟⎠

has full rank sk. Then

˙̂yk = fk+1(x, w, . . . , w(k), ỹ1, . . . , ỹ
(k)
1 , . . . , ỹk, ˙̃yk)

+gk+1(x, w, . . . , w(k−1), ỹ1, . . . , ỹ
(k−1)
1 , . . . , ỹk)v

Define Gk+1 :=
(

G̃k

gk+1

)
and sk+1 := rankGk+1(x). Decompose ˙̃yk as

˙̃yk =
(

ỹk+1

ŷk+1

)

where dim ỹk+1 = sk+1 − sk =: ρ(k+1)v. Then, eliminating v in the last rows,
write

ỹk+1 = f̃k+1(x, w, . . . , w(k), ỹ1, . . . , ỹ
(k)
1 , . . . , ỹk, ˙̃yk)

+g̃k+1(x, w, . . . , w(k−1), ỹ1, . . . , ỹ
(k−1)
1 , . . . , ỹk)v

ŷk+1 = ŷk+1(x, w, . . . , w(k), ỹ1, . . . , ỹ
(k)
1 , . . . , ỹk, ˙̃yk+1)

and set

G̃k+1 :=

⎛
⎜⎝

g̃1

...
g̃k+1

⎞
⎟⎠

End of the algorithm.

Algorithm 11.1 performs the inversion of Σ, viewed as a system depending
on the parameter w, with respect to the input v when ρv := sn equals the
dimension of v. When w is empty, Algorithm 11.1 reduces to the usual Singh’s
inversion algorithm. The indices σi, si, and ρi contain the same information,
and each of them could be used in the following. We choose to state the next
results in terms of ρi, which have a direct interpretation as numbers of zeros
at infinity of order i (see [119]), although the other indices are often used in
proofs and calculations.
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Lemma 11.2. Let the systems

T =
{

ẋ = f(x) + g(x)u
yT = h(x) + h′(x)u (11.3)

and

G =
{

ż = fG(z) + gG(z)v
yG = hG(z) (11.4)

with outputs of the same dimension, be given, and let (GT ) denote the com-
posite system

(GT ) =

⎧⎨
⎩

ẋ = f(x) + g(x)u
ż = fG(z) + gG(z)v
yGT = h(x) − hG(z) + h′(x)u

(11.5)

Then, ρiv(GT ) = ρi(G) for all i and, in particular, ρv(GT ) = ρ(G).

Proof. Let K’ denote the field of meromorphic functions in the variables
x, z, v, . . . , v(N−1) and the parameters u, . . . , u(N), where N = dim x+ dim z.
We denote by EGT

i the vector space spanned over K’ by

{dx, dz, dẏGT , . . . ,dy
(i)
GT }

Note that to consider u, . . . , u(N) as parameters instead of variables means
that the differential d(·) is given by

d(·) = (∂(·)/∂x)dx + (∂(·)/∂z) dz +
N−1∑
i=0

(∂(·)/∂v(i))dv(i)

Following the proof given in ([42], Thm. 2.3) one can show that ρiv(GT ) =
dimK′ EGT

i /EGT
i−1. From this, since

dy
(j)
GT = dy

(j)
T − dy

(j)
G

= φj(x, u, . . . , u(j))dx − dy
(j)
G

with φj ∈ K′, it follows that

ρiv(GT ) = dim spanK′{dx, dz, dẏG, . . . , dy
(i)
G }

−dim spanK′{dx, dz, dẏG, . . . ,dy
(i−1)
G }

and hence

ρiv(GT ) = dim spanK′{dz, dẏG, . . . ,dy
(i)
G }−dim spanK′{dz, dẏG, . . . ,dy

(i−1)
G }

Now, let {w1, . . . , , wri} ⊂ {dz, dẏG, . . . ,dy
(i)
G } be a basis over K′ of EGT

i , and
let w̃ be an element of {w1, . . . , wri}. We write

w̃ = Σγj(x, z, v, . . . , v(N−1), u, . . . , u(N))wj
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with γj ∈ K′ and, computing the derivatives with respect to x, u, . . . , u(N),

∂w̃

∂x
=
∑ ∂γj

∂x
wj = 0

∂w̃

∂u
=
∑ ∂γj

∂u
wj = 0

...
∂w̃

∂u(N)
=
∑ ∂γj

∂u(N)
wj = 0

Therefore, ∂γj/∂x = 0 and ∂γj/∂u = . . . = ∂γj/∂u(N) = 0 for all j, or,
equivalently, γj = γj(z, v, . . . , v(N−1)). This says that {w1, . . . , wri} is a set
of generators over the field K of meromorphic functions in the variables
(z, v, . . . , v(N−1)) of spanK{dz, dẏG, . . . ,dy

(i)
G } = EG

i . Moreover, since K ⊂ K′,
dimK EGT

i = dimK EG
i for all i, and the result follows.

11.2 Model Matching Problem

Let us now state the model matching problem (MMP).

Problem Statement

Given a model

T =
{

ẋ = f(x) + g(x)u
yT = h(x) (11.6)

and a system G as in (11.4), find a proper compensator

H =
{

ξ̇ = fH(ξ, z, u)
v = hH(ξ, z, u)

with state space IRq and a map φ : IRn → IRq such that, denoting by yGH

the output of the composite system GH , yT (u, x) − yGH(u, φ(x), z), that is,
the difference between the output of the model, viewed as a function of u and
of the initial state x, and the output of the composite system, viewed as a
function of u and of a suitably defined initial state z and ξ = φ(x), does not
depend on u.

To gain a better insight into the model matching problem that we are
considering, we now state it in a generalized form (GMMP), which includes
in particular the left inversion problem. Specializing such a formulation by
requiring a proper compensator, we get the most interesting case from the
point of view of control theory.
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Problem Statement (Generalized form)

Given a model T as in (11.3) and a system G as in (11.4), find an integer
ν ≥ 0, a possibly nonproper compensator

H =
{

ξ̇ = fH(ξ, z, u, . . . , u(ν))
v = hH(ξ, z, u, . . . , u(ν))

(11.7)

with state space IRq, and a map φ : IRn → IRq such that, denoting by yGH

the output of the composite system GH , yT (u, x) − yGH(u, φ(x), z), that is,
the difference between the output of the model, viewed as a function of u and
of the initial state x, and the output of the composite system, viewed as a
function of u and of the initial states z and ξ = φ(x), does not depend on
u(ν).

The MMP is the special case of the GMMP for ν = 0.

Remark 11.3. In the MMP the requirement that yT (u, x) − yGH(u, φ(x), z)
does not depend on u amounts, in the linear case, to the equality of the
transfer functions of the model and of the composite systems. From this point
of view, therefore, our formulation represents the natural extension of the one
currently understood for the linear model matching problem (compare with
the quoted references and with [86, 84]).

We recall that a stronger formulation of the MMP, requiring the equality
of yT and yGH , has been considered, only for a linear model, in [39]. Note
that the problem we stated qualifies as an exact MMP, as opposed to an
approximate or an asymptotic MMP that could also be considered, see, e.g.,
[78].

Let us consider the left inversion problem in the linear framework. The
solution provided by the Silverman algorithm [144] has the form (11.7), where
ν is the inherent integration order of the system [143, 127]. In the simple
example given by T = {yT = y and by

G =
{

ż = v
y = z

we obtain

H = G−1 =
{

ξ̇ = ẏ
v = ẏ

The difference between the outputs of the identity model T and of GH is
yT − yGH = y − z, the latter depends on the input y and is independent of
the first derivative ẏ.

Example 11.4. Let

T =
{

ẋ = u
yT = x

and
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G =
{

ż = v
yG = z2

be the data of a MMP. The pair consisting of the compensator

H = {v = u/2z

and of the empty function is a solution in the sense of Remark 11.3. For z0 �= 0,

yGH(u, z0) =
∫ t

0

u(τ)dτ + z2
0

for all input functions u(t) and for all t > 0 such that
∫ t

0 u(τ)dτ + z2
0 > 0.

Then,
yT (u, x) − yGH(u, z) = x − z2

and
d(yT (u, x) − yGH(u, z))(k) ∈ spanK {dx, dz}

In particular, if, for example, the input is bounded by |u(t)| ≤ M and the
initial conditions x0, z0 �= 0, are chosen, yT − yGH is independent of u over
the time interval [0, z2

0/M). It may be useful to note that v = u/2z is a solution
of the MMP in the same way, that is, with the same limitations, in which it
is a solution, in the sense of [87], of the disturbance decoupling problem with
disturbance measurement described by ẋ = u, ż = v, y = x − z2, where u is
the disturbance and v is the control.

Note that taking, for instance,

T =
{

ẋ = xu
yT = x

and

G =
{

ż = zv
yG = z

contrarily to what happens in the linear case, the identity compensator

H = {v = u

does not give a solution of the MMP.

yT − yGH = (x0 − z0) exp (
∫ t

0

u(τ)dτ)

is independent of u only if the initial states of the model and of the system
coincide. In this case, a solution is given by the compensator

H =
{

ξ̇ = ξu
v = (ξ/z)u

where ξ(t) ∈ IRn, and φ = id.
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A structural condition under which a compensator exists and a procedure
to compute it are given in the following theorem.

Theorem 11.5. The generalized model matching problem is solvable if

ρ(GT ) = ρ(G) (11.8)

where (GT) is the composite system (11.5).

Proof. Applying Algorithm 11.1 to (GT ), we obtain

⎛
⎜⎜⎜⎜⎜⎝

Ỹ1

Ỹ2

...
ỸN

ŶN

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F̃1(x, z, u, u̇)
F̃2(x, z, u, u̇, ü, Ỹ1,

˙̃Y 1)
...
F̃N (x, z, u, . . . , u(N), Ỹ1, . . . , Ỹ

(N−1)
1 , . . . , ỸN−1,

˙̃Y N−1)

F̂N (x, z, u, . . . , u(N), Ỹ1, . . . , Ỹ
(N−1)
1 , . . . , ỸN−1,

˙̃Y N−1, ỸN )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

G̃1(z)
G̃2(x, z, u, Ỹ1)
...
G̃N (x, z, u, . . . , u(N−2), Ỹ1, . . . , Ỹ

(N−2)
1 , ỸN−1)

0

⎞
⎟⎟⎟⎟⎟⎠ v

=
(

F̃

F̂N

)
+
(

G̃
0

)
v

(11.9)
with rank G̃ = # rows G̃ = ρv(GT ) and where Ỹi represents a suitable subset
of rows of y

(i)
GT , which will be useful to denote also as y

(i)
T.i − y

(i)
G.i. We can

choose constant values

Y =

⎛
⎜⎜⎜⎝

Y1

...
YN−1

0

⎞
⎟⎟⎟⎠ for Ỹ =

⎛
⎜⎜⎜⎝

Ỹ
(N−2)
1

...
ỸN−1

ỸN

⎞
⎟⎟⎟⎠

such that the generic rank of G̃ evaluated at Y is equal to the number of rows
of G̃. Then, solving for v the system⎛

⎜⎝
Ỹ1

...
ỸN

⎞
⎟⎠ = F̃|Y + G̃|Y v

obtained by replacing Ỹ with Y in (11.9), we get

v = φ(x, z, u, . . . , u(N), Ỹ1, . . . , Ỹ
(N−3)
1 , Y1, . . . , ỸN−2, YN−2, YN−1)
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Now, denoting by w0 a vector of the same dimension as x and by wi a vector
of dimension (N−i)·dim Ỹi, we set ν = N , and we construct the compensator

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẇ0 = f(w0) + g(w0)u

ẇi =

⎛
⎜⎜⎝

0 1 · ·
· · · ·
· · · 1
0 · · 0

⎞
⎟⎟⎠wi +

⎛
⎜⎜⎜⎝

0
...
0
Yi

⎞
⎟⎟⎟⎠ for 1 ≤ i ≤ N − 2

v = φ(w0, z, u, . . . , u(N), w1, . . . , wN−2, YN−1)

(11.10)

Letting φ(x) = (x, 0, . . . , 0), we claim that (H, φ) is a solution of the
GMMP. To show this, let us first note that, in (11.9), ỸN is indepen-
dent of u(k) for all k. By Lemma 11.2 and the rank equality (11.8), it
follows that ρ(GT ) = ρv(GT ) and we know, from ([42], Theorem 2.3),
that the dx, dz, dỸ1, . . . ,dỸ

(N−1)
1 , . . . ,dỸN are independent over the field

K. So, if ∂F̃N/∂u(k) �= 0, for some k ≥ 0, dYN does not belong to
spanK {dx, dz, dỸ1, . . . ,dỸ

(N−1)
1 , . . . ,dỸN} and then ρ(GT ) > ρv(GT ), con-

tradicting the assumption.
Now let us consider the composite system (GH):

(GH) =

⎧⎨
⎩

ẇ = F (w) + G(w)u
ż = fG(z) + gG(z)φ(w, z, u, . . . , u(N))
yGH = hG(z)

initialized at φ(x0) = (x0, 0, . . . , 0) and the difference yT − yGH between the
output of the model and that of (GH). Recalling the notation Ỹi = y

(i)
T.i−y

(i)
G.i,

by substituting the output of H to v in (11.9) and taking derivatives,

y
(N−1)
T.i − y

(N−1)
GH.i = Yi for 1 ≤ i ≤ N − 1

y
(N)
T.N − y

(N)
GH.N = 0

Therefore d(yT − yGH)(k) ∈ spanK {dx, dz, dw, du, . . . , du(N−1)} for all k.

It is worthwhile to note that, although in (11.7) the compensator H is de-
scribed in a very general form, the construction illustrated in the proof of
Theorem 11.5 always produces a system whose state equations have the same
form as those of the model. In particular, the derivatives of the input appear
only in the output function hH(ξ, z, u, . . . , u(n)). A structural condition un-
der which there exists a proper compensator H, that is, one which does not
depend on the derivatives of the input u, is given in the next theorem.

Theorem 11.6. The MMP is solvable with a proper compensator H of the
form

H =
{

ξ̇ = fH(ξ, z, u)
v = hH(ξ, z, u)



11.2 Model Matching Problem 139

if
ρi(GT ) = ρi(G) (11.11)

for all i ≥ 1.

Proof. Assume that (11.11) holds, then, for all i, by Lemma 11.2, ρiv(GT ) =
ρi(GT ). In particular, this implies that at Step 1 of Algorithm 11.1 applied
to (GT ), (

Ỹ1

Ŷ1

)(
F̃1(x, z, u)

F̂1(x, z, u, Ỹ1)

)
+
(

G̃1(z)
0

)
v,

where ∂F̃1/∂u = 0; otherwise ρ1(GT ) would be strictly greater than ρ1v(GT ).
Repeatedly applying the same argument, we get at the last step N,(

Ỹ

ỸN

)
=
(

F̃ (x, z, u, Ỹ , . . . , Ỹ (N−1))
F̂N (x, z, u, Ỹ , . . . , Ỹ (N))

)
+
(

G̃(x, z, Ỹ , . . . , Ỹ (N−2))
0

)
v

and, hence, v = φ(x, z, Ỹ , . . . , Ỹ (N−3)). Therefore the compensator obtained
following the construction described in the proof of Theorem 11.5 is proper
in this case.

Example 11.7. (i) The MMP concerning the model

T =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ =

⎛
⎜⎜⎝

x2

0
x4

0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0 0
1 0
0 0
0 1

⎞
⎟⎟⎠ u

yT =
(

x1

x3

)

and the system

G =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ż =

⎛
⎜⎜⎝

0
z4

0
0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

z3 0
0 1
1 1
0 1

⎞
⎟⎟⎠ v

yG =
(

z2 − z3

z1

)

was considered in [43]. It was shown that the geometric necessary condition
given in the same paper is not verified, although the compensator

H =

⎧⎨
⎩

ζ̇ = ζ2/(ζ + z3) + 1/(ζ + z3)(−ζ 1)u,

v =
(

ζ
ζ2/(ζ + z3)

)
+ 1/(ζ + z3)

(
0 0
z3 1

)
u

provides a solution of the problem (see [43], Example 5.4). It can be easily
checked that (11.11) is verified, that is, ρi(GT ) = ρi(G). Then, applying
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the procedure illustrated in the proof of Theorem 11.5, we get the proper
compensator

H ′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξ̇ =

⎛
⎜⎜⎝

ξ2

0
ξ4

0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0 0
1 0
0 0
0 1

⎞
⎟⎟⎠u,

v =
(

z4 − ξ2

(z4 − ξ2 − u1z3 − u2)/(ξ2 − z3 − z4)

)

Clearly, by removing the unnecessary equations ξ̇1 = ξ2, ξ̇3 = ξ4, and ξ̇4 = u2,
we obtain another compensator, say H”, that solves the problem. Now, the
change of variables ζ = z4 − ξ2 transforms H” into H.

(ii) Consider the model

T =

⎧⎪⎪⎨
⎪⎪⎩

ẋ =
(

x2

0

)
+
(

0
1

)
u

yT =
(

0
x1

)

and the system

G =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ż =

⎛
⎝ 1 0

0 1
z3 1

⎞
⎠ v

yG =
(

z1

z2 − z3

)
for which ρ(GT ) = ρ(G). Note that, since

yG =

⎛
⎜⎜⎜⎜⎜⎜⎝

∫ t

0
v1(τ)dτ + z1(0)

∫ t

0
v2(τ)dτ − exp

(∫ t

0
v1(τ)dτ

) ∫ t

0
exp

(∫ t

0
v1(σ)dσ

)
v2(τ)dτ

+z2(0) + z3(0) exp
(∫ t

0
v1(τ)dτ

)

⎞
⎟⎟⎟⎟⎟⎟⎠

and yT.1 = 0, contrary to what happens in the linear case, it is not possible
to find a compensator H such that yT − yGH = 0 for u �= 0, also when we
are allowed to choose the initial condition z(0). Applying Algorithm 11.1 to
(GT ),

Ỹ =

(
˙̃Y 1

¨̃Y 2

)
=
(

0
u − z3Ÿ1

)
−
(

1 0
z3Ẏ1 Ẏ1

)
v = F̃ + G̃v

and then, in fixing constant values Y for Ỹ , we are obliged to choose Ẏ1 �= 0.

Taking, for instance, Y =
(

1
0

)
, we get v =

( −1
u + z3

)
, which represents by

itself a compensator H that solves the problem.
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Remark 11.8. The conditions of Theorems 11.5 and 11.6 are not necessary for
the existence of solutions of the GMMP and the MMP, as pointed out by the
following example, taken from [77]. Let

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =

⎛
⎜⎜⎝

x2

x3

0
x4

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0 0
1 0
0 1
0 0

⎞
⎟⎟⎠
(

u1

u2

)

yT =

⎛
⎝x2

x4

x1

⎞
⎠

and

G =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ż =

⎛
⎝ z2

0
0

⎞
⎠+

⎛
⎝ 0 z2

1 0
0 1

⎞
⎠(v1

v2

)

yG =

⎛
⎝ z2

z3

z1

⎞
⎠ .

By applying Singh’s Algorithm to G, we get ρ1(G) = ρ2(G) = ρ3(G) = 2. The
same procedure applied to (GT ) gives

ẏGT1 = x3 + u1 − v1,
ẏGT2 = x4 − v2,
ẏGT3 = x2 + z2(ẏGT2 − x4 − 1)

and then,

ÿGT3 = ẏGT1 + z2(ẏGT2 − x4) − (ẏGT1 − x3 − u1)(ẏGT2 − x4)

So ρ1(GT ) = 2, ρ2(GT ) = 3 and the sufficient conditions of Theorems 11.5
and 11.6 are not satisfied. However, the compensator

H =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ̇ =

⎛
⎝ ξ2

ξ3

0

⎞
⎠+

⎛
⎝0 0

1 0
0 1

⎞
⎠(u1

u2

)

v1 = ξ3 + u1

v2 = 0

and φ = id give a solution of the MMP.

From (11.9), we get the equality

Ỹ = F̃ (x, z, u, . . . , u(N), Ỹ1, . . . , Ỹ
(N−1)
1 , . . . , ỸN−1,

˙̃Y N−1)
+G̃N (x, z, u, . . . , u(N−2), Ỹ1, . . . , Ỹ

(N−2)
1 , . . . , ỸN−1)v

(11.12)

and, by differentiation of ŶN , the equalities
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ŶN = F̂N (x, z, u, . . . , u(N), Ỹ1, . . . , Ỹ
(N−1)
1 , . . . , ỸN−1,

˙̃Y N−1, ỸN ),
Ŷ

(n+q−N)
N = F̂n+q(x, z, u, . . . , u(n+q), Ỹ1, . . . , Ỹ

(n+q−1)
1 , . . . , ỸN−1,

Ỹ (n+q−N+1), ỸN ), . . . , Ỹ (n+q−N)
N )

(11.13)

from which it can be understood that a weaker condition for the existence of
solutions of the MMP is, in particular, that there exists a vector of functions

Y (x, z) =

⎛
⎜⎝

Y1(x, z)
...

YN (x, z)

⎞
⎟⎠

such that

i) ∂Y (k)/∂u = 0 for all k;
ii) substituting Y (x, z) and its derivatives for

Ỹ =

⎛
⎜⎝

Ỹ1

...
ỸN

⎞
⎟⎠

and its derivatives in G̃, the generic rank is equal to the number of rows;
iii) substituting Y (x, z) and its derivatives for

Ỹ =

⎛
⎜⎝

Ỹ1

...
ỸN

⎞
⎟⎠

and its derivatives in F̂N , . . . , F̂n+q, F̃ , all the coefficients of the monomials
in u, . . . , u(n+q), and, respectively, all the coefficients of the monomials in
u̇, . . . , u(n+q), are zero. Such a condition is verified in the above example

for Y (x, z) =
(

0
x4

)
.

11.3 Left Factorization

It is well known [25, 70] that in the linear case (11.8) and (11.11) are necessary
and sufficient conditions for solving the GMMP or the MMP, also when no
feedback connection between the state of the system G and the precompen-
sator H is allowed. In such a formulation, the linear GMMP amounts to the
problem of factoring the transfer function of the model T through a possible
left factor, represented by the transfer function of G. It is natural, then, from
an abstract point of view, to consider also the dual problem, which consists of
factoring the transfer function of T through a possible given right factor (see
[24, 25, 70, 107]). In the more general context we are considering, this leads
to the following formulation for what we call the left factorization problem.
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11.3.1 Left Factorization Problem (LFP)

Problem Statement

Given a model T as in (11.6) and a system

H =
{

ż = fH(z) + gH(z)u
v = hH(z) (11.14)

find a proper compensator

G =
{

ξ̇ = fG(ξ, v)
yG = hG(ξ, v)

with state space IRq and a map φ : IRn → IRq such that, denoting by YGH the
output of the cascade GH , yT (u, x0) − yGH(u, φ(x0), z0) = 0 for any initial
states x0, z0.

Problem Statement(Generalized version): GLFP

Given a model T as in (11.3) and a system H as in (11.14), find an integer
ν ≥ 0 and a possibly nonproper compensator

G =
{

ξ̇ = fG(ξ, v, . . . , v(n))
yG = hG(ξ, v, . . . , v(n))

(11.15)

with state space IRq, a map φ : IRn → IRq such that, denoting by YGH the
output of the cascade GH ,

yT − (u, x0) − yGH − (u, φ(x0), z0) = 0 (11.16)

for any initial states x0, z0.

Remark 11.9. The same considerations as in Remark 11.3 apply to the present
situation. Therefore a solution (G, φ) will be one that achieves (11.16) for all
initial states x0, z0 in an open and dense subset of the state spaces.

The first result we have in this framework is the following theorem.

Theorem 11.10. The GLFP is solvable only if

ρ

(
T
H

)
= ρ(H) (11.17)

where
(

T
H

)
is the system consisting of the state and output equations of T

and H.
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Proof. We start by proving the theorem under an additional technical as-
sumption on the system H . Assume that the maximal regular controllability
distribution R∗H of H contained in ker dhH is locally well defined, i.e., that
the regularity conditions of ([86], §6.4) are satisfied. Denoting by G the distri-
bution spanned by gH(z), we assume that the following holds:

dim(G ∪ R∗
H) = m − ρ(H), (11.18)

Now, let the regular feedback u = α(z)+β(z)w be a “friend” of R∗
H and let us

denote by
(

T̃

H̃

)
the system obtained by compensating the system

(
T
H

)
with

u = α(z) + β(z)w. By (11.18), the action of the feedback u = α(z) + β(z)w
transforms H into the system H̃ which, up to a change in coordinates, is of the
form [86] ż1 = f1(z1) + g1(z1)w1, ż2 = f2(z1, z2) + g2(z1, z2)w, v = hH̃(z1),
where w = (w̄1, w̄2), w̄1 = (w1, . . . , wρ), and ρ = ρ(H). Hence,

∂v(k)(w, z0)
∂wi

= 0 (11.19)

for all i ≥ ρ + 1 and for all k. Moreover, if (G, φ) is a solution of the GLFP,
the output trajectory Ỹ (w, x0, φ(x0), z0) of the cascade composition between(

T̃

H̃

)
and the system

G̃ =
{

ξ̇ = fG(ξ, v, . . . , v(n))
y = yT̃ − hG(ξ, v, . . . , v(n))

initialized at (x0, φ(x0), z0), is identically zero. This, together with (11.18),
implies

∂y(k)(w, x0, φ(x0), z0)
∂wi

=
∂y

(k)

T̃
(w, x0, z0)

∂wi
− ∂y

(k)

GH̃
(w, x0, φ(x0), z0)

∂wi

=
∂y

(k)

T̃
(w, x0, z0)

∂wi
− ∂y

(k)
G (yH̃(w, z0), φ(x0))

∂wi

=
∂y

(k)

T̃
(w, x0, z0)

∂wi

−∂y
(k)
G (yH̃(w, z0), φ(x0))

∂yH̃

· ∂yH̃(w, z0)
∂wi

=
∂y

(k)

T̃
(w, x0, z0)

∂wi
= 0, for all i ≥ ρ + 1 and all k

Therefore, ρ

(
T̃

H̃

)
is not greater than ρ(H) and, as a consequence,
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ρ

(
T
H

)
= ρ

(
T̃

H̃

)
= ρ(H)

The general case can always be reduced to the previous one. If (11.18)
does not hold, one can pick ρ(H) independent output components of H that
can be decoupled with a regular dynamic state feedback [49, 38, 125]. Then,
the extended system HE verifies dim(GE ∪ RHE ) = m − ρ(HE). Since any
solution of the GLFP concerning T and H also solves that concerning TE and
HE and since the regular dynamic state feedback does not affect the system’s
rank, the conclusion follows from the first part.

In general (11.17) is not sufficient for the solvability of the GLFP. However,
under (11.18) and an additional technical condition, which assures the possi-
bility of expressing z locally as a function of the output and its derivatives,
it is possible to get a local result. More precisely, it is possible, for any z0 in
an open and dense subset of the state space, to find a neighborhood D0 and
to show the existence of a compensator G and a map φ which achieve (11.16)
for z ∈ D0. We will say, in this case, that the LFP is locally solvable.

Theorem 11.11. The GLFP is locally solvable if the following conditions
hold:

i) ρ

(
T
H

)
= ρ(H);

ii) dim(GE ∪RHE ) = m − ρ(H);
iii)
∑

i≥0(ρ(H) − si) = n, where n = dim z, s0 = 0, and the si are obtained
by applying Singh’s inversion algorithm to H.

Proof. We consider a friend of RH , u = α(z)+ β(z)w, as in the proof of The-
orem 11.10, and we use the notations introduced there. By the rank equality

ρ

(
T
H

)
= ρ

(
T̃

H̃

)
= ρ(H), since (11.19) holds, the input components wi,

with i ≥ ρ + 1, do not affect the output of
(

T̃

H̃

)
. By applying Singh’s inver-

sion algorithm to H̃ ,
w̄1 = ψ(z, v, v̇, . . . , v(n)) (11.20)

where ψ is a meromorphic function of its arguments and, in particular, it is
defined for all z in an open dense subset of the state space. Moreover, using
arguments as in ([87], §4), one can show that, by (iii), the Jacobian matrix

∂

∂z

⎛
⎜⎜⎜⎝

v − hH̃(z)
v̂1 − v̂1(z, ṽ1)

...
v̂N − v̂N (z, ṽ1, . . . , ṽ

(N−1)
1 , . . . , ṽN ))

⎞
⎟⎟⎟⎠
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whose elements are obtained by applying Singh’s algorithm to H̃ , has rank
n. Then, for any z0 in an open and dense subset of the state space, there
exists a neighborhood D0 of z0 such that z = χ(v, v̇, . . . , v(ν)) for z ∈ D0. By
substituting in (11.20), w̄1 = ψ̄(v, v̇, . . . , v(ν)). Now, writing the state equation

of
(

T̃

H̃

)
as

ẋ = f1(x, z) + g1(x, z)w̄1 + g2(x, z)w̄2

ż = f2(z) + g3(z)w

we can consider the system

G =
{

ξ̇ = f1(ξ, χ(v, v̇, . . . , v(ν))) + g1(v, v̇, . . . , v(ν)))ψ̄(v, v̇, . . . , v(ν)))
yG = h(ξ)

=
{

ξ̇ = fG(ξ, v, v̇, . . . , v(ν))
yG = h(ξ)

and we claim that (G, ϕ), where ϕ is the identity map, is a solution of the
GLFP relative to D0. By inspection, one sees that the output trajectory
Y (w, x0, ϕ(x0), z0) of the system

ẋ = f1(x, z) + g1(x, z)w̄1 + g2(x, z)w̄2

ż = f2(z) + g3(z)w
ξ̇ = f1(ξ, z) + g1(ξ, z)w̄1

y = h(x) − h(ξ)

is identically zero for all w. Inverting the feedback u = α(z)+β(z), we obtain
yT (u, x0) = yGH(u, ϕ(x0), z0).

Example 11.12. Let the systems

T =
{

ẋ = u
yT = x

and

H =

⎧⎨
⎩

ż1 = z2

ż2 = u
v = z2

1

be given. The conditions (i), (ii) of Theorem 11.10 are clearly verified as well
as (iii) because ρ(H) = 1, dim z = 2, s1 = 0, s2 = 1. In this case, there is no
need to apply any feedback. By Singh’s inversion algorithm, u = ψ(z, v, v̇, v̈) =
(v̈ − 2z2

2)/2z1 and v − z2
1 = 0, v̇ − 2z1z2 = 0. Since

∂

∂z

(
v − z2

1

v̇ − 2z1z2

)
=
(−2z1 0

z2 z1

)

has rank 2 for z1 �= 0, we can express z as a function of v, v̇ in the neighborhood
of any point for which z1 �= 0. In particular, here,
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z1

z2

)
= χ(v, v̇) =

( √
v

v̇/2
√

v

)
for z1 > 0

Then, the compensators

G1 =

⎧⎨
⎩ ξ̇ =

v̈ − v̇2/2v

2
√

v
yG = ξ

and

G2 =

⎧⎨
⎩ ξ̇ = − v̈ − v̇2/2v

2
√

v
yG = ξ

together with the identity map, are local solutions of the GLFP, respectively,
for z1 > 0 and for z1 < 0.

When a proper compensator is sought, the necessary condition (11.17) has
to be strengthened into the equality of structures at infinity, and one obtains
the following result.

Theorem 11.13. The LFP is solvable with a proper compensator

G =
{

ξ̇ = fG(ξ, v)
yG = hG(ξ, v)

only if

ρi

(
T
H

)
= ρi(H) (11.21)

for all i ≥ 1.

Proof. Let K denote the field of meromorphic functions in the variables
(x, z, u, . . . , u(N−1)) where N = dimx + dim z. By definition,

ρi

(
T
H

)
= dim spanK {dx, dz, dẏT , dv̇, . . . ,dy

(i)
T , dv(i)}

−dim spanK {dx, dz, dẏT , dv̇, . . . ,dy
(i−1)
T , dv(i−1)}

Denoting by K’ the field of meromorphic functions in the variables

(x, z, ξ, u, . . . , u(N−1)),

since neither T nor H depend on ξ,

ρi

(
T
H

)
= dim spanK′ {dx, dz, dξ, dẏT , dv̇, . . . ,dy

(i)
T , dv(i)}

−dim spanK′ {dx, dz, dξ, dẏT , dv̇, . . . ,dy
(i−1)
T , dv(i−1)}

Since yGH = yT , one can substitute dy
(k)
GH in dy

(k)
T for all k in the equation

above, thus
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ρi

(
T
H

)
= dim spanK′ {dx, dz, dξ, dẏGH, dv̇, . . . ,dy

(i)
GH , dv(i)}

−dim spanK′ {dx, dz, dξ, dẏGH , dv̇, . . . ,dy
(i−1)
GH , dv(i−1)}

Moreover, by the properness of (GH), we have also that

dy
(k)
GH ∈ spanK′ {dx, dz, dξ, dv̇, . . . ,dv(k)}

thus

ρi

(
T
H

)
= dim spanK′ {dx, dz, dξ, dv̇, . . . ,dv(i)}

−dim spanK′ {dx, dz, dξ, dv̇, . . . ,dv(i−1)}
Let K′′ denote the field of meromorphic functions in the variables
(z, u, . . . , u(n−1)) where n = dim z. Since

dv(k) ∈ spanK′′ {dz, du, du̇, . . . , du(k−1)}

for all k ≤ n, we get finally

ρi

(
T
H

)
= dim spanK′′ {dz, dv̇, . . . ,dv(i)}

−dim spanK′′ {dz, dv̇, . . . ,dv(i−1)}
= ρi(H)
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Measured Output Feedback Control Problems

For all control laws designed in the previous chapters, it was assumed that all
state variables were available for measurement. This is seldom the case and
two issues then exist:

• either the state variables are estimated by a (nonlinear) observer;
• a static or dynamic output feedback is sought directly to solve the control

problem considered.

In this chapter, we will investigate the second option and solve some control
problems either by output feedback or by measurement feedback.

12.1 Input-output Linearization

The second option was considered in [113, 114, 162]to solve the input-output
linearization problem via static or dynamic measured output feedback.

12.1.1 Input-output Linearization via Static Output Feedback: the
SISO Case

It is shown that linearization by input-output injection plays a crucial role in
the solution of the feedback linearization problem by static output feedback.

Consider the nonlinear control system

ẋ = f(x, u)
y = h(x) (12.1)

where x ∈ IRn, u ∈ IR, y ∈ IR, and f, h are meromorphic functions of their
arguments.
Find, if possible, a static output feedback u = α(y, v) such that the closed-
loop has a linear input-output relation. Let n̄ = dimO∞. The solution of the
problem is provided by
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Theorem 12.1. Assume that the relative degree of y is finite. The input-
output linearization problem is solvable for (12.1) by static output feedback if
and only if

(i) dy(n̄) is linearizable by n̄ output injections φ1(y, u), . . ., φn̄(y, u);
(ii) dimIR

(
spanIR{dy, dφ1, . . . ,dφn̄}

)
= dimK (spanK{dy, dφ1, . . . ,dφn̄}).

Proof. Necessity: Let u = α(y, v) be the linearizing output feedback and
γ(y, u) its inverse, i.e., v = γ(y, u). Denote by r the relative degree of the
output y. The linearized closed-loop system is described by the following equa-
tion:

dy(n̄) = λ1dy(n−1) + · · · + λn̄dy + βrdv(n̄−r) + · · · + βn̄dv

where the λi’s and βi’s are in IR. Substitute v = γ(y, u) and get

dy(n̄) = λ1dy(n−1) + · · · + λn̄dy + βrd[γ(y, u)](n̄−r) + · · · + βn̄d[γ(y, u)].

Let dφi(y, u) = λidy for i = 1, · · · , r− 1 and dφi(y, u) = λidy + βidγ(y, u) for
i = r, · · · , n̄. Thus, the conditions (i) and (ii) in Theorem 12.1 are necessarily
fulfilled.
Sufficiency: Conditions (i) and (ii) in Theorem 12.1 yield

φ(y, u) = λiy + βiγ(y, u)

for i = 1, ..., n̄, and

dy(n̄) = λ1dy(n−1) + · · · + λn̄dy + β1d[γ(y, u)](n̄−1) + · · · + βn̄d[γ(y, u)]

Since the relative degree is finite, the equation γ(y, u) = v can be solved in u
which yields the required output feedback.

Example 12.2. Consider a simple inverted pendulum of length l as in Figure
12.1. Its model is standard and is given by







�m

u

x1
�


��

Fig. 12.1. Inverted pendulum
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ẋ1 = x2

ẋ2 = k1x2 + k2(sin x1) + k3u
y = x1

(12.2)

The angular position of the pendulum with respect to the vertical is denoted
by x1. The input torque is u, k1 = −fc/ml2, k2 = g/l, k3 = 1/ml2S, m is the
point mass at the end of the pendulum, fc is a viscous friction coefficient, and
g denotes the gravitational constant. The system fulfils

ÿ = k1x2 + k2(sin x1) + k3u

and thus
ÿ = k1ẏ + φ2(y, u)

Obviously, the input-output relation is linearized by the following output feed-
back:

u =
1
k3

(v − k2 sin y)

and the closed-loop system input-output relation is ÿ = k1ẏ + v.

12.1.2 Input-output Linearization by Dynamic Output Feedback

In practice, the conditions of Theorem 12.1 are strong; it is seldom that there
exists a static output feedback solution of the problem considered. Thus, it is
interesting to search for a solution in a much wider class of compensators that
still can be implemented that easily: the class of dynamic output feedbacks.

Consider first the following introductory example:

ẋ1 = x2 − 1
2

ln(x1 + 2u)

ẋ2 =
x1 + u

x1 + 2u
+

1
2

(
x2 − 1

2 ln(x1 + 2u)
x1 + 2u

)
(12.3)

y = x1

whose input-output differential equation is

ÿ = φ2

(
d
dt

[φ1(y, u)] , y, u

)
(12.4)

where φ1(y, u) = u, φ2(w, y, u) = y+u−w
y+2u . Although this structure is different

from the one that characterizes linearity up to output injections, it allows the
design of a dynamic compensator that solves the input-output linearization:
set

η = u

v = y+u−η̇
y+2u

(12.5)

Then, the dynamic output feedback is deduced
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η̇ = y + η − (y + 2η)v
u = η

(12.6)

and the closed-loop system is linear since its input-output equation is ÿ = v.
What was operated on this example can be done on general nonlinear

systems. Let us first state the problem before giving a sufficient condition
under which a solution exists and can be constructed.

Problem statement : Given system (12.1), find if possible, a dynamic
output feedback

u = H(y, η, v)
η̇ = F (y, η, v) (12.7)

such that the closed-loop system

ẋ = f(x, H(h(x), η, v))
η̇ = F (h(x), η, v)
y = h(x)

(12.8)

is diffeomorphic to
ζ̇1 = Aζ1 + bv

ζ̇2 = f̄2(ζ, η, v)
y = cζ1

(12.9)

where, η ∈ IRq, ζ1 ∈ IRn̄, ζ2 ∈ IRn+q−n̄, and (c, A) is an observable pair.
Two sufficient conditions are given successively below. Both generalize the
structure (12.4) in the introductory example.

Theorem 12.3. The system (12.1) can be linearized by dynamic output feed-
back if

dy(n̄) = λ1dy(n̄−1) + · · · + λr−1dy(n̄−r+1) + dΦ (12.10)

where

Φ = φn̄(·, y, u) ◦ d
dt

φn̄−1(·, y, u) ◦ . . . ◦ d
dt

φr+1(·, y, u) ◦ d
dt

φr(y, u)

and λi ∈ IR (i = 1, . . . , r − 1).

Proof. Consider the system (12.1).
Let

η1 := φr(y, u)
η2 := φr+1(η̇1, y, u)
η3 := φr+2(η̇2, y, u)

... (12.11)
ηn̄−r := φn̄−1(η̇n̄−r−1, y, u)

v := φn̄(η̇n̄−r, y, u)
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From the definition of the relative degree r,
∂φr

∂u
�≡ 0 and

∂φi

∂φ̇i−1

�≡ 0 for

i = r + 1, . . . , n̄. Thus, the following dynamic compensator is well defined:

u = φ−1
r (y, η1) (12.12)

η̇i = φ−1
r+i(ηi+1, y, φ−1

r (y, η1)) i = 1, . . . , n̄ − r − 1

η̇n̄−r = φ−1
n̄ (v, y, φ−1

r (y, η1))

Substitute (12.12) in (12.10) and get the closed-loop system behavior:

dy(n̄) = λ1dy(n̄−1) + · · · + λr−1dy(n̄−r+1) + dv (12.13)

System (12.1) has been linearized by dynamic output feedback.

A way to check condition (12.10) is provided by the following algorithm. It
allows us to compute the required functions φi (i = 1, . . . , n̄) whenever they
exist. Denote Fk = E{dy, ..., dy(k−1), du, ..., du(k−1)}.
Algorithm 12.4 Assume that,

dim F n̄ = 2n̄. (12.14)

Initial check: dy(n̄) ∈ En̄. If false, stop! If true, denote ω1 = dy(n̄).

Step i (i=1,. . . ,r-1).
Pick functions ξi such that ωi − ξidy(n̄−i) ∈ En̄−i. Let ω̄i = ξidy. Check:
ω̄i ∈ spanIR{dy}. If false, stop! If true, define ωi+1 = ωi − ω̄i.

Step r.
Pick functions ξr, θr ∈ K such that ωr − ξrdy(n̄−r) − θrdu(n̄−r) ∈ En̄−r. Let
ω̄r = ξrdy + θrdu. Check: dω̄r ∧ ω̄r = 0. If false, stop! If true, define φr(y, u)
such that

ω̄r = λrdφr (12.15)

where λr ∈ K. Denote zr+1 = φ̇r(y, u). If
∂φr

∂y
�= 0, rewrite ωr so that ωr ∈

spanK{dz
(n̄−r−1)
r+1 , . . . ,dz2, du(n̄−r−1), . . . ,du, dy}.

If
∂φr

∂y
= 0 et

∂φr

∂u
�= 0, rewrite ωr so that

ωr ∈ spanK{dz
(n̄−r−1)
r+1 , . . . ,dzr+1, dy(n̄−r−1), . . . ,dy, du}

Step � (�=r+1, . . . , n̄-1).
Pick ξ	, θ	, μ	 ∈ K such that

ωr − μ	dz
(n̄−	)
	 − ξ	dy(n̄−	) − θ	du(n̄−	) ∈ En̄−	
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Set ω̄	 = μ	dz	 + ξ	dy + θ	du. Check: dω̄	 ∧ ω̄	 ∧ dφ	−1 = 0. If false, stop! If
true, define φ	(z	, y, u) such that

ω̄	 = λ	dφ	 + γ	dφ	−1 (12.16)

where γ	, λ	 ∈ K. Denote z	+1 = φ̇	(z	, y, u). Rewrite ωr so that

ωr ∈ spanK{dz
(n̄−	−1)
	+1 , . . . ,dz	+1, dy(n̄−	−1), . . . ,dy, du(n̄−	−1), . . . ,du}

Step n̄.
By definition, ωr ∈ spanK{dzn̄, dy, du}, and

dωr = 0

End of the Algorithm.

Theorem 12.5. Under assumption (12.14), dy(n̄) ∈ E can be rewritten in
the form (12.10) if and only if dy(n̄) ∈ En̄ and

•
dω̄r ∧ ω̄r = 0 (12.17)
dω̄	 ∧ ω̄	 ∧ dφ	−1 = 0, � = r + 1, . . . , n̄ − 1 (12.18)

• there exist ξ1, . . . , ξr−1 ∈ IR, such that

dy(n̄) −
r−1∑
i=1

ξidy(n̄−i) ∈ En̄−r (12.19)

Proof. Necessity: Thanks to Theorem 12.3, the necessity of (12.19) is obvious.
Assume that there exist n̄ − r + 1 functions φi (i = r, . . . , n̄) so that dy(n̄)

reads as in condition (i) of Theorem 12.3. Then, from (12.15) and (12.16), the
differential 1-forms ω̄i can be rewritten as follows:

ω̄r =
∂φn̄

∂φ̇n̄−1

∂φn̄−1

∂φ̇n̄−2

· · · ∂φr+1

∂φ̇r

dφr(y, u)

ω̄r+1 =
∂φn̄

∂φ̇n̄−1

∂φn̄−1

∂φ̇n̄−2

· · · ∂φr+2

∂φ̇r+1

dφr+1(φ̇r , y, u) + γr+1dφr

...

ω̄n̄−1 =
∂φn̄

∂φ̇n̄−1

dφn̄−1(φ̇n̄−2, y, u) + γn̄−1dφn̄−2

This proves the necessity of (12.17) and of (12.18).
Sufficiency: The sufficiency of Theorem 12.5 follows from Algorithm 12.4.
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A weaker, but more complex, sufficient condition is given now.

Theorem 12.6. System (12.1) can be linearized by dynamic output feedback if

∃ ñ, q ∈ IN dy(ñ) = λ1dy(ñ−1) + · · · + λñdy (12.20)

+d
[
φq( · , φ̇q−2, . . . , φ̇1, y, u)

◦ d
dt

φq−1( · , φ̇q−3, . . . , φ̇1, y, u) ◦ . . .

◦ d
dt

φ2( · , y, u) ◦ d
dt

φ1(y, u)
]

where ∂φ1
∂u �= 0, and λi ∈ IR (i = 1, . . . , ñ).

Remark 12.7. Since the observability index cannot decrease, ñ ≥ n̄, and since
the relative degree cannot decrease either, ñ − q + 1 ≥ r.

Proof (Proof of Theorem 12.6.). Consider system (12.1). Let

η1 := φ1(y, u)
η2 := φ2(η̇1, y, u)
η3 := φ3(η̇2, η̇1, y, u)

... (12.21)
ηq−1 := φq−1(η̇q−2, . . . , η̇1, y, u)

v := φq(η̇q−1, . . . , η̇1, y, u)

From the definition of the relative degree,
∂φ1

∂u
�≡ 0 and

∂φi

∂φ̇i−1

�≡ 0 for i =

1, . . . , q. Define the following dynamic output feedback:

η̇i = φ−1
i+1(ηi+1, φ

−1
i , . . . , φ−1

2 , y, φ−1
1 (y, η1)) i = 1, . . . , q − 2

η̇q−1 = φ−1
q (v, φ−1

q−1, . . . , φ
−1
2 , y, φ−1

1 (y, η1))

u = φ−1
1 (y, η1) (12.22)

Substitute (12.22) into (12.20) and get the input-output relation for the closed-
loop system:

dy(ñ) = λ1dy(ñ−1) + · · · + λñdy + dv (12.23)

Thus, system (12.1) has been linearized.

If q ≤ n̄, an algorithmic necessary and sufficient condition is given by Algo-
rithm 12.9.

The following lemma is required to introduce Algorithm 12.9 ([81], Lemma
2.6).
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Lemma 12.8. Consider a cospace Ω ⊂ Ω′ and a 1-form ω /∈ Ω and ω ∈ Ω′.
Then, there exists π ∈ Ω such that d(ω + π) ∧ (ω + π) = 0 if and only if

dim(span{ω} + Ω)∗ ≥ dim(Ω)∗ + 1 (12.24)

where Ω∗ denotes the largest integrable subspace contained in a given space
Ω.

Algorithm 12.9 Assume that q ≤ n̄.
Initial check: ∃α1, . . . , αñ−q ∈ IR such that dy(ñ) −∑ñ−q

i=1 αidy(ñ−i) ∈ Eq. If
false, stop!
If true, denote ω = dy(ñ −∑ñ−q

i=1 αidy(ñ−i).

Step 1.
Check 1.1: ω ∈ Eq. If false, stop!
If true, pick functions ξ1, θ1 ∈ K such that ω − ξ1dy(q−1) − θ1du(q−1) ∈ Eq−1.
Define a differential 1-form ω̄1 such that ω̄1 = ξ1dy + θ1du.
Check 1.2: dω̄1 ∧ ω̄1 = 0. If false, stop!
If true, let φ1(y, u) such that ω̄1 = λ1dφ1 where λ1 ∈ K. Let z1 = φ̇1(y, u).

Step 2.

Check 2.1: ω ∈ Eq−1 + span{dz
(q−2)
1 }. If false, stop!

If true, pick functions ξ2, θ2, μ21 ∈ K such that

ω − μ21dz
(q−2)
1 − ξ2dy(q−2) − θ2u

(q−2) ∈ Eq−2

Define a differential 1-form ω̄2 such that ω̄2 = μ21dz1 + ξ2dy + θ2du.
Define Ω2 = span{dφ1}.
Check 2.2: dω̄2 ∧ ω̄2 ∧ dφ1 = 0. If false, stop!
If true, then there exist π2 ∈ Ω1, λ2 ∈ K, and φ2(z1, y, u) such that ω̄2 +π2 =
λ2dφ2. Let z2 = φ̇2(z1, y, u).

Step � (� ≤ q-1).

Check l.1: ω ∈ Eq−l+1 + span{dz
(q−l)
1 , . . . ,dz

(q−l)
l−1 }. If false, stop!

If true, pick functions ξlθl, μl,1, . . . , μl,l−1 ∈ K such that

ω − μl,1dz
(q−l)
1 − . . . − μl,l−1dz

(q−l)
l−1 − ξldy(q−l) − θldu(q−l) ∈ Eq−l

Define a differential 1-form ω̄l such that

ω̄l = μl,l−1dzl−1 + · · · + μl,1dz1 + ξldy + θldu

Define the cospace

Ωl = span{
k−1∑
i=1

∂φk

∂żi
dzi, k = 1, . . . ,min(l − 1, q − l); dφ1}
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Check l.2: dim(span{ω̄l} + Ωl)∗ ≥ dimΩ∗
l + 1. If false, stop!

If true, then there exist πl ∈ Ωl, λl ∈ K and φl(z1, . . . , zl−1, y, u) such that
ω̄l + πl = λldφl.
Denote zl = φ̇l(zl−1, . . . , z1y, u).

Step q.
Check q.1: ω ∈ E1 + span{dz1, . . . ,dzq−1}. If false, stop!
If true, pick functions ξq, θq, μq,1, . . . , μq,q−1 ∈ K such that

ω = μq,q−1dzq−1 + · · · + μq,1dz1 + ξqdy + θqdu

Check q.2: dω ∧ ω = 0. If false, stop!
End of the Algorithm.

One defines a triangular endogenous dynamic output feedback as follows

u = F1(y, η1)
η̇1 = F2(y, η1, η2) (12.25)
η̇2 = F3(y, η1, . . . , η3)

...
η̇q−2 = Fq−1(y, η1, . . . , ηq−1)
η̇q−1 = Fq(y, η1, . . . , ηq−1, v)

Endogenous feedbacks have first been considered in [115]. Note that (12.12),
(12.22) are triangular endogenous dynamic output feedbacks. This class of
feedbacks, (12.20), is necessary for the dynamic output feedback linearization
problem.

Theorem 12.10. There exists a triangular endogenous dynamic output feed-
back that linearizes the input-output relation of system (12.1) if and only if
condition (12.20) is fulfilled.

Proof. Sufficiency: The sufficiency follows from the proof of Theorem 12.6
since the compensator described in (12.22) is a triangular endogenous dynamic
output feedback.
Necessity: There exist (12.25) such that the linear closed-loop system reads

dy(ñ) = λ1dy(ñ−1) + · · · + λñdy + μ1dv(s) + . . . + μs+1dv (12.26)

for some integer s. Define the following triangular endogenous dynamic output
feedback:

v = ξ1

ξ̇1 = ξ2 (12.27)
...

ξ̇s =
1
μ1

[w − μ2ξs−1 − . . . − μs+1ξ1]
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The composition of (12.25) with (12.27) maintains the structure of the trian-
gular endogenous dynamic output feedback and yields

dy(ñ) = λ1dy(ñ−1) + · · · + λñdy + dw (12.28)

Thus, without loss of generality, assume that the triangular endogenous dy-
namic output feedback (12.25) yields (12.28). From (12.25),

η1 = F−1
1 (y, u)

η2 = F−1
2 (η̇1, y, u) (12.29)

η3 = F−1
3 (η̇2, η̇1, y, u)

...
w = F−1

q (η̇q−1, . . . , η̇1, y, u)

Thus, one obtains the following expression for w :

w =
[
φq( · , φ̇q−2, . . . , φ̇1, y, u) ◦ d

dt
φq−1( · , φ̇q−3, . . . , φ̇1, y, u) ◦ . . .

◦ d
dt

φ2( · , φ̇1, y, u) ◦ d
dt

φ1(y, u)
]

(12.30)

where φi = F−1
i for i = 1, . . . , q. Combining (12.26) and (12.30), the result

follows.

Theorem 12.11. Assume that dim En̄ = 2n̄ and q ≤ n̄. For ñ ≥ n̄, dy(ñ) can
be written as (12.20) if and only if all checks in Algorithm 12.9 are fulfilled.

Proof. The sufficiency obviously follows from the construction of Algorithm
12.9, since dω ∧ ω = 0 at the end of Step q.

The necessity is proven by induction. The necessity of the initial check as
well as the necessity of the two checks in Step 1 are obvious. Assume that all
checks in Steps 1, . . . , l, l ≤ q − 2 are fulfilled; then, one shows that the two
checks in Step l + 1 are fulfilled as well.

Let

z1 = φ̇1(y, u)
...

zl = φ̇l(zl−1, . . . , z1, y, u)

Then, by assumption, for some ξ ∈ K,

ω = ξdφq(φ̇q−1, . . . , φ̇l+1, zl, . . . , z1, y, u)

= ξ ·
(

∂φn

∂φ̇n−1

dφ̇n−1 + . . . +
∂φq

∂φ̇l+1

dφ̇l+1

+
∂φq

∂zl
dzl + . . . +

∂φq

∂z1
dz1

)
(12.31)
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Since dφl+1 ⊂ span{dzl, . . . ,dz1, dy, du},

dφ̇l+1 ⊂ span{dżl . . . , dż1, dẏ, du̇, dzl, . . . ,dz1, dy, du} (12.32)

and

dφl+2 ⊂ span{dφ̇l+1, . . . ,dż1, dy, du}
⊂ span{d(dφl+1)

dt
, dżl . . . , dż1, dy, du}

(12.32)⊂ span{dżl . . . , dż1, dẏ, du̇, dzl, . . . ,dz1, dy, du} (12.33)

Thus,

dφ̇l+2 ⊂ span{dy, dẏ, dÿ, du, du̇, dü, dzi, dżi, dz̈i, i = 1, . . . , l} (12.34)

In a similar vein, one proves that

dφq−1 ⊂ span{dy, . . . , dy(q−l−2), du, . . . , du(q−l−2), (12.35)

dzi, . . . ,dz
(q−l−2)
i , i = 1, . . . , l}

and

dφ̇q−1 ⊂ span{dy, . . . , dy(q−l−1), du, . . . , du(q−l−1), (12.36)

dzi, . . . ,dz
(q−l−1)
i , i = 1, . . . , l}

Thus, from (12.31), (12.32), (12.34), and (12.36),

ω ∈ Eq−l + span{dzi, . . . ,dz
(q−l−1)
i } (12.37)

It is shown by induction that

span{dzi, . . . ,dz
(k)
i } ⊂ Ei+k (12.38)

span{dzi, . . . ,dz
(q−l−2)
i } ⊂ Eq−l−1+span{dz

(q−l−1)
j , j = 1, . . . , i−1} (12.39)

for i = 1, . . . , l.
For instance, let us prove (12.39).
Equation (12.39) is fulfilled for i = 1 due to the definition of z1. Assume

that it is fulfilled for i − 1. Since

span{dzi, . . . ,dz
(q−l−2)
i } ⊂ Eq−l−1 + span{dzj, . . . ,

dz
(q−l−1)
j , j = 1, . . . , i − 1}

⊂ Eq−l−1 +
+span{dz

(q−l−1)
j , j = 1, . . . , i − 1} (12.40)

where the second inclusion yields from the induction hypothesis, (12.39) is
also fulfilled for i.
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Combining (12.37) and (12.40),

ω ∈ Eq−l + span{dz
(q−l−1)
j , j = 1, . . . , i − 1}

It is thus necessary to fulfill the first check of Step l + 1.
To prove the necessity of the second check of Step l + 1, let us develop

(12.31) which is obtained from the definition of zi:

ω − ξ ·
[

∂φq

∂φ̇q−1

· · · ∂φl+2

∂φ̇l+1

](
l∑

i=1

∂φl+1

∂zi
dz

(q−l−1)
i

+
∂φl+1

∂y
dy(q−l−1) +

∂φl+1

∂u
du(q−l−1)

)
∈ Eq−l−1 + span{dzj

i , i = 1, . . . , l; j = 0, . . . , q − l − 2}
(12.38)

= Eq−l−1 + span{dzj
i ,

i = 1, . . . ,min(l, q − l + 1); j = n − l − i − 1, . . . , n − l − 2} (12.41)

One has,

dz
(q−l−2)
1 =

∂φ1

∂y
dy(q−l−1) +

∂φ1

∂u
du(q−l−1)

(
mod Eq−l−1

)
(12.42)

dz
(q−l−3)
2 =

∂φ2

∂z1
dz

(q−l−2)
1

(
mod Eq−l−2

+span{dz
(j)
i , j = 0, . . . , q − l − 3}

)
(12.38)

=
∂φ2

∂z1
dz

(q−l−2)
1

(
mod Eq−l−1

)
(12.42)

=
∂φ2

∂z1

(
∂φ1

∂y
dy(q−l−1)

+
∂φ1

∂u
du(q−l−1)

)(
mod Eq−l−1

)
(12.43)

dz
(q−l−2)
2 =

∂φ2

∂z1
dz

(q−l−1)
1(

mod Eq−l−1 + span{dz
(j)
1 , j = 0, . . . , q − l − 2}

)
(12.38)

=
∂φ2

∂z1
dz

(q−l−1)
1

(
mod Eq−l−1 + span{dz

(q−l−2)
1 }

)
∃μ2∈K,(12.42)

=
∂φ2

∂z1
dz

(q−l−1)
1 + μ2

(
∂φ1

∂y
dy(q−l−1)

+
∂φ1

∂u
du(q−l−1)

)(
mod Eq−l−1

)
(12.44)

and more generally, one shows by induction that there exists μkij ∈ K such
that
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dz
(q−l−k−1)
k = μk11

(
∂φ1

∂y
dy(q−l−1) +

∂φ1

∂u
du(q−l−1)

)(
mod Eq−l−1

)

dz
(q−l−k)
k = μk21

∂φ2

∂z1
dz

(q−l−1)
1

+μk21

(
∂φ1

∂y
dy(q−l−1) +

∂φ1

∂u
du(q−l−1)

)(
mod Eq−l−1

)
...

dz
(q−l−2)
k =

k−1∑
i=1

∂φk

∂zi
dz

(q−l−1)
i + μkk1

k−2∑
i=1

∂φk−1

∂zi
dz

(q−l−1)
i + · · ·

+μkk(k−1)
∂φ2

∂z1
dz

(q−l−1)
1 + μk21

(
∂φ1

∂y
dy(q−l−1) +

∂φ1

∂u
du(q−l−1)

)
(
mod Eq−l−1

)
(12.45)

Define the space

Ωl+1 = span{
k−1∑
i=1

∂φk

∂zi
dzi, k = 2, . . . ,min(l, q − l − 1);

∂φ1

∂y
dy +

∂φ1

∂u
du}

from the definition of the differential one-form ω̄l+1 in Step l+1 of Algorithm
12.9, and using (12.41) to (12.45), one concludes that the differential one-form
πl+1 ∈ Ωl+1 such that

ω̄l+1 − πl+1 = ξ · ∂φn

∂φ̇n−1

· · · ∂φl+2

∂φ̇l+1

(
l∑

i=1

∂φl+1

∂zi
dzi +

∂φl+1

∂y
dy +

∂φl+1

∂u
du

)

= ξ̄dφl+1

Then, from Lemma 12.8, the second check of Step l + 1 is necessarily
fulfilled.

The rest of the necessity can be proved in a similar vein.

12.1.3 Example

Consider a system described by a higher order input-output differential equa-
tion

y(n) = ϕ(y, . . . , y(n−1), u, u̇, . . . , u(s)) (12.46)

Note that Theorems 12.1, 12.3, and 12.6 remain valid for system (12.46). How-
ever, any input-output system (12.46) that fulfills the conditions of Theorem
12.1 admits a state realization (12.1). An input-output system that fulfills the
conditions of Theorem 12.3 does not necessarily admit a state realization.
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Consider y(4) = ẏ2u̇+u+yu̇+uẏ+ ẏ2u+3yẏü+ ÿyu̇+y2u(3)+3ẏyu̇+y2ü+
ÿuy. This input-output system does not admit any standard state realization.
Note that its relative degree is 1. Let ω = dy(4),

ω = y2du(3) + (3ẏy + y2)dü + (yu̇ + yu)dÿ

+(ẏ2 + 3ẏy + yÿ + y)du̇ + (2ẏu̇ + 3yü + 2ẏu + 2üy + 3u̇y + u)dẏ

+(3ẏü + ÿu̇ + 2yu(3) + 3ẏu̇ + 2yü + ÿu + u̇)dy + (ẏ2 + yÿ + ẏ + 1)du

Step 1 of Algorithm 12.4 yields ω̄1 = y2du. Then, φ1 = u, λ1 = y2, and
z2 = φ̇1(y, u). ω is rewritten so that ω ∈ spanK{dz̈2, . . . ,dz2, dÿ, . . . , dy, du}:

ω = y2dz̈2 + (3ẏy + y2)dż2 + (yz2 + yu)dÿ

+(ẏ2 + 3ẏy + yÿ + y)dz2 + (2ẏz2 + 3yż2 + 2ẏu + 2ż2y + 3z2y + u)dẏ

+(3ẏż2 + ÿz2 + 2yz̈2 + 3ẏz2 + 2yż2 + ÿu + z2)dy + (ẏ2 + yÿ + ẏ + 1)du

Step 2 yields ω̄2 = y2dz2 + yz2dy + yudy. The relation dω̄2 ∧ ω̄2 ∧ dφ1 = 0 is

fulfilled. Then, 1
y

(
ω̄2 + y2du

)
= dφ2 = d(yφ̇1 + uy), and z3 =

d
dt

(yu̇ + yu). ω

is rewritten so that ω ∈ spanK{dż3, dz3,dẏ,dy,du̇,du}:

ω = ydż3 + ẏdz3 + (z3 + u)dẏ + ydu̇ + (ż3 + u̇)dy + (ẏ + 1)du

From Step 3, define ω̄3 = ydz3+(z3+u)dy+ydu. The relation dω̄3∧ω̄3∧dφ2 =

0 is fulfilled. Then, ω̄3 = dφ3 = d(yφ̇2 + uy), and z4 =
d
dt

(yφ̇2 + yu). ω is

rewritten so that ω ∈ spanK{dz4, dy, du}: ω = dz4+du. Thus, dφ4 = dφ̇3+du.
A linearizing dynamic compensator is now obtained. From φ1 = u, φ2 =

yφ̇1 + uy, φ3 = yφ̇2 + uy, and φ4 = φ̇3 + u, set η1 = u, η2 = yη̇1 + η1y, η3 =
yη̇2 + η1y, and v = η̇3 + η1. The compensator

η̇1 = 1
y (η2 − η1y) η̇3 = v − η1

η̇2 = 1
y (η3 − η1y) u = η1

linearizes the system, and the closed-loop system admits the following stan-
dard state realization:

ζ̇1 = ζ2 η̇1 = 1
ζ1

(η2 − η1ζ1)
ζ̇2 = ζ3 η̇2 = 1

ζ1
(η3 − η1ζ1)

ζ̇3 = ζ4 η̇3 = v − η1

ζ̇4 = v y = ζ1

12.1.4 The Hopping Robot

In this section, straightforward generalizations of the previous results are given
for the multivariable case, and in the situation where the measured outputs
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Fig. 12.2. Hopping robot

z are different from the outputs y to be controlled. Consider the kinematic
model of a hopping robot in [61].

The input-output relation of this system can be linearized by dynamic
measurement feedback. The system is not linearizable by output injections.⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ψ̇ = u1

�̇ = u2

θ̇ = m(	+1)2

1+m(	+1)2 u1

y1 = ψ
y2 = θ
z = �

(12.47)

Compute ÿ1 = u̇1, ÿ2 =
2mu1u2(� + 1)

(1 + m(� + 1)2)2
+

mu̇1(� + 1)2

1 + m(� + 1)2
. Since

ÿi = φi2(φi1, z, u) (i = 1, 2)

with φ11 = u1, φ12 = φ̇11,φ21 = u1, φ22 =
2mu1u2(z + 1)

(1 + m(z + 1)2)2
+

mφ̇21(z + 1)2

1 + m(z + 1)2
,

there exists a dynamic measurement feedback which linearizes the input-
output relation of (12.47). The compensator can be written as

u1 = η

η̇ = v1

u2 =
[
v2 +

m(z + 1)2v1

1 + m(z + 1)2

]
(1 + m(z + 1)2)2

2ηm(z + 1)
.

The closed-loop relations are ÿ1 = v1 and ÿ2 = v2.
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12.2 Input-output Decoupling

Consider the square invertible system

ẋ = f(x) + g(x)u
y = h(x) (12.48)

where x ∈ IRn, u ∈ IRm, and y ∈ IRm.

12.2.1 Input-output Decoupling via Static Output Feedback

Problem Statement

Given system (12.48), find if possible, a static output feedback u = α(y) +
β(y)v such that

• dy
(k)
i ∈ span{dx, dui, ...,du

(k−1)
i , ∀k ≥ 0

• dy
(k)
i �∈ span{dx}

Example 12.12.

ẋ1 = x3(sin x1 + u1/x2)
ẋ2 = x3 + u2

ẋ3 = −x3

y1 = x1

y2 = x2

This system can be decoupled without any feedback of x3. The output feed-
back u1 = −y2 sin y1, u2 = v2 decouples the system.

To characterize fully the solvability of the problem, introduce a special sub-
space Ωi associated with the output component yi:

Ωi = {ω ∈ X | ∀k ∈ IN, ω(k) ∈ spanK{dx, dy
(ri)
i , ...,dy

(ri+k−1)
i }

The subspace Ωi is a controllability cospace and characterizes those state
variables that do not have to be rendered unobservable for noninteracting
control. The main result is now in order.

Theorem 12.13. System (12.48) can be decoupled by a static output feedback
u = α(y) + β(y)v if and only if

• the relative degrees r1, ..., rm are finite
• dim(X + spanK{dy

(r1)
1 , ...,dy

(rm)
m }) = n + m

• dy
(ri)
i ∈ Ωi ⊕ spanK{dyj, du, j �= i}

• dπi ∧ πi ∧ dyi = 0, ∀i = 1, ..., m, where πi ∈ spanK{dyj , du, j �= i} is such
that dy

(ri)
i − πi ∈ Ωi.
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12.2.2 Input-output Decoupling Via Measurement Feedback

Problem Statement

Consider system (12.48) and the measurement z = k(x), z ∈ IRq. The input-
output decoupling via static measurement feedback is solvable if there exists
a feedback u = α(z) + β(z)v such that

• dy
(j)
i ∈ span{dx, dui, ...,du

(j−1)
i , ∀j ≥ 0

• dy
(j)
i �∈ span{dx}

Before giving the general solution of this problem, introduce the following
notation. Given a subspace Ω of X , the largest controlled invariant subspace
contained in Ω is denoted Ω∗. Denote Z = {dz}.
Theorem 12.14. System (12.48) is decouplable by measurement feedback if

• the relative degrees r1, ..., rm are finite
• dim(X + spanK{dy

(r1)
1 , ...,dy

(rm)
m }) = n + m

• dyi(ri) ∈ Ωi + Z + U
• dim(spanK{πi} ⊕ Ωi ∩ Z)∗ = dim(Ωi ∩ Z)∗ + 1 where πi ∈ Z + U is such

that dy
(ri)
i − πi ∈ Ωi, for i = 1, ..., m.

Problem

12.1. Consider the virus dynamics model in Section 2.10.2

Ṫ = s − δT − βTv

Ṫ ∗ = βTv − μT ∗

v̇ = kT ∗ − cv
y1 = T
y2 = v

(12.49)

Show that this model can be fully linearized by static output feedback.
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16. Charlet B, Lévine J, Marino R (1991) Sufficient conditions for dynamic feedback
linearization. SIAM J. Control Optim. 29:38–57

17. Cheng D, Isidori A, Respondek W, Tarn TJ (1988) Exact linearization of non-
linear systems with outputs. Math. Syst. Theory. 21:63–83

18. Chiasson J, Nonlinear differential-geometric techniques for control of a series
DC motor. IEEE Trans. Control Syst. Tech. 2:35–42

19. Choquet-Bruhat Y, DeWitt-Morette C, Dillard-Bleick M (1989) Analysis, Man-
ifolds and Physics, Part I: Basics. North-Holland, Amsterdam

20. Claude D (1986) Everything you always wanted to know about linearization. In:
Fliess M, Hazewinkel M (eds) Algebraic and Geometric Methods in Nonlinear
Control Theory. Reidel, Dordrecht, pp 181–220

21. Conte G, Moog CH, Perdon AM (1988) Un théorème sur la représentation
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30. Delaleau E (1993) Sur les dérivées de l’entrée en représentation et commande
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”Développements récents en non linéaire”, LSS-CNRS, Paris, pp 9–23

32. Delaleau E, Fliess M (1992) An algebraic interpration of the structure algorithm
with an application to feedback decoupling. In: Proc. Nonlinear Control Syst.
Design IFAC Symp., Bordeaux, pp 489–494

33. Delaleau E, Respondek W (1995) Lowering the orders of derivatives of controls
in generalized state space systems (summary). J. Math. Syst. Estim. Control
5:375–378

34. Delaleau E, Pereira da Silva P (1994) Rank conditions for the dynamic distur-
bance decoupling problem. In: Proc. 33rd IEEE Conf. Decision Control, Buena
Vista, pp 1784–1789

35. Delaleau E, Pereira da Silva P (1998) Filtrations in feedback synthesis: Part I
- Systems and feedbacks. Forum Mathematicum 10:147–174



References 169

36. Delaleau E, Pereira da Silva P (1998) Filtrations in feedback synthesis: Part II
- Input-output decoupling and disturbance decoupling. Forum Mathematicum.
10:259–276.

37. Descusse J, Moog CH (1985) Decoupling with ynamic compensation for strong
invertible affine non-linear systems. Int. J. Control 42:1387–1398

38. Descusse J, Moog CH (1987) Dynamic decoupling for right-invertible nonlinear
systems. Syst. Control Lett. 8:345–349

39. Di Benedetto MD (1989) A condition for the solvability of the nonlinear model
matching problem. In: Descusse J, Fliess M, Isidori A, Leborgne D (eds)New
Trends in Nonlinear Control Theory. (Lecture Notes in Control and Information
Sciences, vol 122) Springer Verlag, Berlin, pp 102–115

40. Di Benedetto MD, Glumineau A, Moog CH (1991) Equivalence of nonlinear
systems under dynamic state feedback. In: Proc. 30th IEEE Conf. Decision
Control, Brighton, pp 400–405

41. Di Benedetto MD, Glumineau A, Moog CH (1994) The nonlinear interactor
and its application to input-output decoupling. IEEE Trans. Autom. Control
39:1246–1250

42. Di Benedetto MD, Grizzle JW, Moog CH (1989) Rank invariants of nonlinear
systems. SIAM J. Control Optim. 27:658–672

43. Di Benedetto MD, Isidori A (1986) The matching of nonlinear models via dy-
namic state-feedback. SIAM J. Control Optim. 24:1063–1075

44. Diop S (1991) Elimination in control theory. Math. Control Signals Syst. 4:72–
86

45. Diop S, Fliess M (1991) On nonlinear observability. In: Proc. Eur. Control
Conf., Grenoble, pp 152–157

46. Flanders H (1963) Differential Forms with Application to the Physical Sciences.
(Mathematics in Science and Engineering, vol. 11) Academic Press, New York

47. Fliess M (1980) Realizations of nonlinear systems and abstract transitive Lie
algebras. Bull. Am. Math. Soc. 2:444–446

48. Fliess M (1981) Fonctionnelles causales non linéaires et indéterminées non com-
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Birkhäuser, Boston



170 References
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Theory. Birkhäuser, Boston, pp 268–298

83. Isidori A (1984) Nonlinear feedback, structure at infinity and the input-output
linearization problem. In: In: Fuhrmann PA (ed) Mathematical Theory of Net-
works and Systems. Proc. MTNS-83 Beer Sheva. (Lecture Notes on Control
and Information Sciences, vol 58) Springer Verlag, Heidelberg, pp 473–493

84. Isidori A (1985) The matching of a prescribed linear input-output behavior in
a Nonlinear System. IEEE. Trans. Autom. Control 30:258–265

85. Isidori A (1986) Control of nonlinear systems via dynamic state-feedback. In:
Fliess M, Hazewinkel M (eds) Algebraic and Geometric Methods in Nonlinear
Control Theory. Reidel, Dordrecht

86. Isidori A (1989) Nonlinear Control Systems, 2nd ed. (Communications and
Control Engineering Series) Springer, Berlin

87. Isidori A, Krener AJ, Gori-Giorgi C, Monaco S (1981) Nonlinear decoupling
via feedback: a differential geometric approach. IEEE. Trans. Autom. Control
26:331–345.

88. Isidori A, Moog CH (1988) On the nonlinear equivalent of the notion of trans-
mission zeros. In: Byrnes CI, Kurzhanski A (eds) Modeling and Adaptive Con-
trol. (Lecture Notes in Control and Information Sciences, vol 105) Springer,
Berlin, pp 146–158

89. Isidori A, Moog CH, De Luca A (1986) A sufficient condition for full lineariza-
tion via dynamic state feedback. In: Proc. 25th IEEE Conf. Decision Control,
pp 203–208

90. Isidori A, Ruberti A (1984) On the synthesis of linear input-output responses
for nonlinear systems. Syst. Control Lett. 4:17–22

91. Jakubczyk B (1986) Local realizations of nonlinear causal operators. SIAM J.
Control and Optim. 24:231–242

92. Jakubczyk B (1986) Realization theory for nonlinear systems; three approaches.
In: Fliess M, Hazewinkel M (eds) Algebraic and Geometric Methods in Nonlin-
ear Control Theory. Reidel, Dordrecht, pp 3–13

93. Jakubczyk B (1987) Feedback linearization of discrete-time systems. Syst. Con-
trol Lett. 9:411–416

94. Jakubczyk B (1992) Remarks on equivalence and linearization of nonlinear
systems. In: Proc. 2nd. IFAC NOLCOS Symp., Bordeaux, pp 393–397

95. Jakubczyk B, Normand-CyrotD (1984) Orbites de pseudo-groupes de diffeo-
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